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Abstract

An Integrated Framework for Planning and
Control of Semi-Autonomous Vehicles

by
Andrew Jacob Gray

Doctor of Philosophy in Engineering - Mechanical Engineering
University of California, Berkeley

Professor J. Karl Hedrick, Co-Chair
Professor Francesco Borrelli, Co-Chair

This thesis presents the design of a novel active safety system prevent-
ing unintended roadway departures. The proposed framework unifies threat
assessment, stability, and control of passenger vehicles into a single com-
bined optimization problem. A nonlinear Model Predictive Control (NMPC)
problem is formulated where the nonlinear vehicle dynamics, in closed- loop
with a driver model, is used to optimize the steering and braking actions
needed to keep the driver safe. A model of the drivers nominal behavior is
estimated based on his observed behavior. The driver commands the vehicle
while the safety system corrects the drivers steering and braking action in
case theres a risk that the vehicle will unintentionally depart the road. The
resulting predictive controller is always active and mode switching is not nec-
essary. We show simulation results detailing the behavior of the proposed
controller as well as experimental results obtained by implementing the pro-
posed framework on embedded hardware in a passenger vehicle. The results
demonstrate the capability of the proposed controller to detect and avoid
roadway departures while avoiding unnecessary interventions.
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Chapter 1

Introduction

Advances in sensing technologies have enabled the introduction and commer-

cialization of several automated driving features over the last two decades.

Examples of such applications are threat assessment Warning Strategies

[12], Adaptive Cruise Control (ACC) [91], Rear-end Collision Avoidance sys-

tems [22], as well as Lane Keeping systems [77]. In safety applications,

autonomous interventions are activated automatically. Over-activation of

automated safety interventions might be felt as intrusive by the driver, while

on the other hand, a missed or delayed intervention might lead to a collision.

A typical active safety system architecture is modular [3], with separate

threat assessment, decision making, and intervention modules. In particular,

the threat assessment module deals with the task of determining whether in-

terventions are necessary and plays an important role in the interaction with

the driver. The threat assessment module repeatedly evaluates the driver’s

ability in maintaining safety in each situation and this information is used by

the decision making module in order to decide whether and how to assist the

driver. It is a challenge for an active safety system to properly assess when to

intervene. In the literature, a large variety of threat assessment and decision

making approaches can be found [22, 78, 62, 29]. In the simplest approaches,

used in production vehicles, automated steering or braking interventions are

issued when simple measures like the time to collision [22] or time to line

crossing [78] pass certain thresholds.
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CHAPTER 1. INTRODUCTION

More sophisticated approaches, on the other hand, include the computa-

tion of Bayesian collision probabilities [62] or sets of safe states from which the

vehicle can safely evolve [29]. In advanced safety systems, such as roadway

departure prevention, the intervention module has the goal to both determine

a safe trajectory and coordinate the vehicle actuators. The literature on ve-

hicle path planning and control is rich, see, e.g. [32, 72, 104, 48]. Because of

its capability to systematically handle system nonlinearities and constraints,

work in a wide operating region and close to the set of admissible states and

inputs, Model Predictive Control (MPC) has been shown to be an attractive

method for solving the path planning and control problem [32, 33]. Previous

approaches to lane departure prevention using predictive control, as in [4],

make the assumption that the vehicle is traveling at a constant velocity (and

can therefore not consider braking), and does not use any information about

the human driver.

In this thesis, we design a novel active safety system for prevention of un-

intended roadway departures with a human-in-the-loop. Rather than sepa-

rately solving the threat assessment, decision making, and intervention prob-

lems, we reformulate them as a single combined optimization problem. In

particular, a predictive optimal control problem is formulated which simul-

taneously uses predicted driver’s behavior and determines the least intrusive

intervention that will keep the vehicle in a region of the state space where the

driver is deemed safe. The proposed controller is always active, which avoids

the design of switching logic or the tuning of a sliding scale. In addition,

since the proposed controller is designed to only apply the correcting control

action that is necessary to avoid violation of the safety constraints, the in-

trusiveness of the safety application is kept minimal. Furthermore, the full

nonlinear dynamics of the vehicle are considered in the optimization problem

and the corrective action can augment both the driver’s steering and braking.

The thesis is organized as follows: in Chapter 2 we detail the vehicle

models that are used for control. Chapter 3 introduces simplified driver

models that are estimated in real-time, as well as presents some extensions

to model uncertainty in the driver’s future behavior. Chapter 5 introduces

our Model Predictive Control approach as well as details how we handle the
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CHAPTER 1. INTRODUCTION 1.1. CONTRIBUTIONS

uncertainty in the uncertain driver models. Chapter 6 presents simulation

and experimental results from an implementation of Hierarchical MPC on an

experimental platform and Chapter 7 unifies everything into an Integrated

Safety Framework and presents simulative and experimental results.

1.1 Contributions

The following describes the list of contributions made by the author. The

bibliographic references refer to the List of Publications at the beginning of

this thesis.

1.1.1 Hierarchical Model Predictive Control

Papers [1]-[2] describe an approach that decomposes the planning and con-

trol problems into an upper and lower level. In [1] the upper level solves the

path planning problem using motion primitives. The authors are the first to

investigate the feasibility of planning using motion primitives for automotive

applications by formulating the problem and implementing the planning ar-

chitecture on an experimental test vehicle. The details are described in §6.1.

In [2] the planning problem is made solvable in real-time by utilizing a co-

ordinate transformation where the contribution made is the implementation

of such a transformation within the model predictive control framework and

is discussed in §6.2. The work in [6] further reduces the computation time of

the MPC problem by using tailored algorithms.

1.1.2 A Unified Framework for Active Safety

The main contribution in this thesis is on the development and implementa-

tion of a novel active safety system framework for semi-autonomous vehicles,

presented in Chapter 7. In [3] and [4] the framework was proposed to unify

the threat assessment, planning, and control problem into a single combined

optimization problem that incorporates closed-loop human behavior predic-

tion. In [6] the framework was implemented on a test vehicle and the suc-

3



CHAPTER 1. INTRODUCTION 1.1. CONTRIBUTIONS

cessful results show the utility of the proposed controller. In [10] we extend

the approach to include moving obstacles.

1.1.3 Robust Model Predictive Control for Uncertain

Driver Models

The remaining contributions extend the unified framework to include robust

guarantees on safety by explicitly modeling the uncertainty on the driver’s

behavior. In [9] we use set-based methods to capture the spread on all

possible future trajectories and constrain the controller to satisfy the safety

constraints for the whole invariant set, as outlined in §5.3.1. In [12] we extend

this approach to the nonlinear vehicle model by reforming the dynamics and

approximating the robust invariant set and implementing the controller on

an experimental test vehicle. In [11] we propose an uncertain driver model

by modeling the uncertainty using a probability distribution function and

probabilistically satisfy the safety constraints. The approach is presented in

§5.3.2

4



Chapter 2

Vehicle Dynamics Models

This chapter introduces the various vehicle dynamics models useful for con-

trol design. The models presented capture the relevant dynamics deemed

important for our application of threat assessment, planning, and control,

but are, in general, oversimplified as further dynamics are neglected. Vehicle

dynamics has been well studied and we draw extensively from the literature

[91, 68]. Consider the vehicle in Figure 2.1,

yF

xF

x

y

z

Mψ̇

ẋ ẏ

bO

Figure 2.1: A vehicle sketch depicting the body-fixed coordinate frame, Ob,

as well as body-fixed longitudinal and lateral velocities, ẋ and ẏ, forces Fx,

Fy, and moment, M .
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CHAPTER 2. VEHICLE DYNAMICS

The translational body-fixed velocities are denoted as ẋ and ẏ for the

longitudinal and lateral axes, respectively. The yaw angle is denoted as ψ

and the yaw rate about the z-axis through the center of gravity is ψ̇. The

total longitudinal force acting on the vehicle is Fx, the total lateral force

is Fy and the moment about the z-axis through the center of gravity is

M . Newton’s law is applied to the center of gravity (CoG) to obtain the

general rigid-body dynamics. The following differential equations describe

the longitudinal, lateral, and yaw motion,

mẍ = Fx, (2.1a)

mÿ = Fy, (2.1b)

Iψ̈ =M, (2.1c)

where m is the vehicle mass and I is the inertia about the z-axis. To model

the planar motion of the vehicle a coordinate transformation is needed from

the vehicle body-fixed frame Ob to the inertial frame OI . A simple rotation

around the z-axis by the amount of the yaw angle ψ is used to calculate the

velocities in the inertial frame,

Ẋ = ẋ cos(ψ)− ẏ sin(ψ), (2.2a)

Ẏ = ẏ sin(ψ)− ẋ cos(ψ), (2.2b)

Ψ̇ = ψ̇, (2.2c)

where Ẋ and Ẏ are the vehicle longitudinal and lateral velocities, respectively,

in the inertial frame, and Ψ̇ is the yaw rate.

The sections to follow will detail the calculations of the forces acting

on the vehicle to arrive at mathematical models, of varying complexity, to

describe the vehicle motion. The rest of the chapter is organized in the fol-

lowing way: in section 2.1 a Four Wheel Nonlinear Model is derived where

the forces Fx, Fy, and M are computed as nonlinear functions of the vehicle

state, steering, braking, and driving at the four wheels. In section 2.2 the

Pacjeka and Fiala tire models are presented. A simplification from the Four

Wheel Model to a Bicycle model is derived in section 2.3 where the reduced

6



CHAPTER 2. VEHICLE DYNAMICS

complexity is useful for real-time control. The Spatial Model presented in

section 2.4 utilizes a coordinate transformation to convert space to the in-

dependent variable and is useful in modeling static obstacles as convex box

constraints in the MPC chapter. Finally, a Linear Model is presented that

will be utilized in the chapter on Robust MPC.

7



CHAPTER 2. VEHICLE DYNAMICS 2.1. NONLINEAR FOUR WHEEL MODEL

2.1 Nonlinear Four Wheel Model

In this section a useful model for control will be presented that models the

vehicle as a rigid body and calculates the forces at each of the four wheels

as nonlinear functions of the vehicle state and inputs. Consider the vehicle

sketch in Figure 2.2.

ẋ

ẏ

Figure 2.2: Modeling notation depicting the forces in the vehicle body-fixed

frame, the forces in the tire-fixed frame, and the rotational and translational

velocities. The relative coordinates ey and eψ are illustrated on the sketch

of the road as well as the driver model variable elpψ and the angle of the road

tangent ψd.

We use the following set of differential equations to describe the vehicle

8



CHAPTER 2. VEHICLE DYNAMICS 2.1. NONLINEAR MODEL

motion within the lane,

mẍ = mẏψ̇ +

4
∑

i=1

Fxi, (2.3a)

mÿ = −mẋψ̇ +

4
∑

i=1

Fyi, (2.3b)

Iψ̈ = lf(Fy1 + Fy2)− lr(Fy3 + Fy4)+ (2.3c)
wt
2
(−Fx1 + Fx2 − Fx3 + Fx4), (2.3d)

ėψ = ψ̇ − ψ̇d, (2.3e)

ėy = ẏ cos(eψ) + ẋ sin(eψ), (2.3f)

where m and I denote the vehicle mass and yaw inertia, respectively, lf and

lr denote the distances from the vehicle center of gravity to the front and

rear axles, respectively, and wt denotes the track width. ẋ and ẏ denote the

vehicle longitudinal and lateral velocities, respectively, and ψ̇ is the turning

rate around a vertical axis at the vehicle’s center of gravity. eψ and ey in

Figure 2.3 denote the vehicle orientation and lateral position, respectively,

in a road aligned coordinate frame and ψroad is the angle of the tangent to

the road centerline in a fix coordinate frame.

9



CHAPTER 2. VEHICLE DYNAMICS 2.1. NONLINEAR MODEL

ye

ψe

roadψ

Figure 2.3: A road aligned coordinate frame illustrating the error states with

respect to the road, ey and eψ.

Fyi and Fxi are tire forces acting along the vehicle lateral and longitudinal

axis, respectively, and fyi, fxi are forces acting along the tire lateral and

longitudinal axis, respectively.

The longitudinal and lateral tire force components in the vehicle body

frame are modeled as,

Fxi = fxi cos(δi)− fyi sin(δi), (2.4a)

Fyi = fxi sin(δi) + fyi cos(δi), i ∈ {1, 2, 3, 4}, (2.4b)

where δi is the steering angle at wheel i. We introduce the following assump-

tion on the steering angles.

Assumption 1 Only the steering angles at the front wheels can be controlled

and the steering angles at the right and left wheels of each axle are assumed

to be the same, i.e., δ1 = δ2 = δ and δ3 = δ4 = 0. In addition, an actuator

which corrects the driver commanded steering angle, such that δ = δd + δc,

is available, where δd is the driver commanded steering angle and δc is the

correcting steering angle component.

10



CHAPTER 2. VEHICLE DYNAMICS 2.1. NONLINEAR MODEL

The longitudinal and lateral forces are, in general, complex functions of

several parameters. In this thesis two such functions are detailed in the next

section 2.2, the Magic Tire Formula, or the Pacjeka model [87], and the Fiala

tire model [57]. A dependency could be written as

fxi = fl(αi, σi, µi, Fzi), (2.5a)

fyi = fc(αi, σi, µi, Fzi), i ∈ {1, 2, 3, 4}, (2.5b)

where αi is the slip angle at tire i, σ is the slip ratio, µ is the friction

coefficient, and Fz is the normal force. These parameters will be defined

next while the functions fl and fc are defined in section 2.2.

The slip angle α is defined as the angle between the velocity vector of the

wheel and the orientation of the wheel itself, as shown in Figure 2.2. It is

expressed as

αi = tan−1

(

vywi
vxwi

)

, (2.6)

where vxw is the longitudinal wheel velocity and vyw is the lateral wheel

velocity. The wheel velocities are computed as

vy = ẏ + aψ̇, vx = ẋ− cψ̇, i = 1, (2.7a)

vy = ẏ + aψ̇, vx = ẋ+ cψ̇, i = 2, (2.7b)

vy = ẏ − bψ̇, vx = ẋ− cψ̇, i = 3, (2.7c)

vy = ẏ − bψ̇, vx = ẋ+ cψ̇, i = 4. (2.7d)

The slip ratios in equation 2.5 are defined as

σi =











rwωi
vywi

− 1, if vywi > rwωi, vywi 6= 0, during braking

1−
vywi
rwωi

, if vywi < rwωi, ωi 6= 0, during acceleration
(2.8)

where rw is the radius of the wheel and ω is again the angular velocity, as

depicted in Figure 2.2, and the wheel velocities are computed in (2.7). Note

that σ ∈ [−1, 1]. The angular velocities of the wheels, ωi in equation (2.31),

11



CHAPTER 2. VEHICLE DYNAMICS 2.1. NONLINEAR MODEL

are obtained by integrating the set of differential equations

Jwiω̇i = −fxirw − Tbi + Teng,i − bωi, i ∈ {1, 2, 3, 4}. (2.9)

Jwi is the inertia of wheel i, Tb is the braking torque generated at the wheel

and Teng is the accelerative torque generated at the wheel.

The main contribution of the normal force Fz in (2.5) is due to the weight

of the vehicle and we make use of the following assumption,

Assumption 2 The normal force Fz is constant and the distribution is gov-

erned by the parameters a and b describing the geometry of the car:

Fzi =
bmg

2(a+ b)
, i ∈ {1, 2}, (2.10a)

Fzi =
amg

2(a+ b)
, i ∈ {3, 4}. (2.10b)

We note that equations (2.10) are an approximation of the actual normal

force as longitudinal and lateral accelerations, as well as roll and pitch of the

vehicle, can vary these forces. Equations (2.10) describe the normal forces in

steady-state operation.

The Nonlinear Four Wheel Model is compactly written as

ξ(t) = f 4w(ξ(t), u(t)), (2.11)

where ξ = [ẋ, ẏ, ψ, ψ̇, X, Y, ωi] and u = [δ, Ti], i ∈ {1, 2, 3, 4} and the net

torque input at each wheel is T = Teng − Tb.

12



CHAPTER 2. VEHICLE DYNAMICS 2.2. TIRE MODELS

2.2 Tire Models

In this section two tire models, the Pacejka model, also known as The Magic

Tire Formula, and the Fiala tire model, are introduced. The Pacejka tire

model is semi-empirical and in general models the tire forces more accurately

compared to the Fiala model, however, the Fiala model is less complex and

is utilized during real-time implementation to speed up the sampling time.

The Pacejka model is presented in subsection 2.2.1 and the Fiala model is

presented in subsection 2.2.2.

2.2.1 Pacjeka Tire Model

The Pacjeka tire model, or as its called the Magic Tire Formula [6], is a

semi-empirical formula that provides a method to calculate the longitudinal

fx and lateral fy tire forces and aligning momentM . It provides a benefit over

linear tire models, presented in section 2.2.3, in that it is accurate for a wide

range of operating conditions, including large slip angles and slip ratios, and

combined longitudinal and lateral force generation. The simplified Pacjeka

model, presented in [91], where only lateral or longitudinal forces are being

calculated, is expressed as

Y (X) = y(x)− Sv, (2.12)

with

y(x) = D sin [C arctan (B x− E (B x− arctanB x))] , (2.13a)

x = X − Sh, (2.13b)

where Y is the output variable, either lateral force fy or longitudinal force

fx. X is the input variable, either slip angle α shown in Figure 2.2, or slip

ratio σ calculated in equation (2.31), respectively. The model parameters

B, C, D, E, Sv and Sh are summarized in Table 2.2.1.

13



CHAPTER 2. VEHICLE DYNAMICS 2.2. TIRE MODELS

Table 2.1: List of Pacejka tire model parameters.

Parameter Name Parameter Name

B stiffness factor C shape factor

D peak value E curvature factor

Sh horizontal shift Sv vertical shift

To illustrate the meaning of some of the factors the sketch in Figure 2.4

is produced. The coefficient D is shown to represent the peak value of the

tire force characteristics, the product BCD corresponds to the slop at the

origin, the value ys is the asymptotic value of the output y at large values of

x, the shape factor C controls the limits of the range of the sine function in

equation (2.13) and therefore shapes the resulting curve,

C =
2

π
sin−1

(ys
D

)

. (2.14)

The offsets Sh and Sv account for ply-steer and conicity effects and possibly

rolling resistance which can cause fy and fx curves to not pass through the

origin [6, 91]. E, the curvature factor, can change the shape of the curve

near the peak and controls the value of the sip xm at which the peak of the

curve occurs,

E =
B xm − tan

( π

2C

)

B xm − tan−1 (B xm)
. (2.15)
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sy

x
X

Y
y

hS

vS
mx

D

)BCD(1−tan

Figure 2.4: A sketch of the Pacjeka tire model function illustrating the pa-

rameters of the formula.

The geometry of the wheels, such as wheel camber, can introduce offset

in the fy vs. α curve. To accommodate the asymmetry, the curvature factor,

E, is made dependent on the sign of the abscissa, x.

E = Eo +∆E sgn(x) (2.16)

This modification will also accommodate the difference in shape expected to

occur in the fx vs. σ characteristics between the driving and braking ranges

[6].The value of the curve approaches an asymptotic value, ys, at large slip

values. This is expresses as

ys = D sin(
π

2
C) (2.17)

The parameters discussed are functions of normal load and wheel camber

angle. However, the parameters B, C, D, and E can be expressed as function
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of normal load Fz and friction coefficient µ. They are expressed as follows

D = a1F
2
z + a2Fz (2.18a)

BCD = a3sin(a4arctan(a5Fz)) (lateral) (2.18b)

BCD =
a3F

2
z + a4Fz
ea5Fz

(longitudinal) (2.18c)

E = a6F
2
z + a7Fz + a8 (2.18d)

where a1, a2, ..., a8 are constants that have to be determined for each tire.

We make use of the following assumptions,

Assumption 3 In equation (2.23) the vertical forces Fzi are assumed con-

stant and determined by the vehicle’s steady state weight distribution when

no lateral or longitudinal accelerations act at the vehicle center of gravity.

Assumption 4 The friction coefficient is assumed to be known and to be

the same at all wheels, i.e., µi = µ, ∀i and constant over a finite time

horizon. At each time instant an estimate of µ is assumed available. See,

e.g., [102, 94, 88, 97] for an overview on friction estimation techniques. The

friction coefficient enters the system equations as a known parameter.
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Figure 2.5: Pacejka tire force curve comparing lateral tire force fy to slip

angle α and longitudinal tire force fx to slip ratio σ In these plots the friction

coefficient µ = 1.

Simplified Pacejka Tire Model

In this section a simplified version of the Pacejka Tire Model is presented.

This model is useful to reduce the computation complexity for real-time ap-

plications. We assume the pedal braking distributes braking forces according

to the following relation:

fx1 = fx2 = σ Fb
2
, fx3 = fx4 = (1− σ)Fb

2
, (2.19)

where σ is a constant (vehicle dependant) distribution parameter and Fb is

the total braking force. An actuator capable of augmenting the braking of

the driver is assumed available.

The tire force components fxi, fyi, are generated at the tire-road contact

patch. fyi is computed using the Pacejka tire formula [87]. We let αi denote

17
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Figure 2.6: Sample plots of lateral tire force characteristics for different levels
of braking, where ϕ =

√

(µiFzi)
2 − f 2

xi
.

the tire slip angle, µi denote the friction coefficient, Fzi denote the vertical

load at each wheel and write the tire formula as:

fyi =
√

(µiFzi)
2 − f 2

xi
sin (Ci arctan (Biαi)), (2.20)

where Ci, Bi are tire parameters that are calibrated using experimental data.

The tire slip angles αi in (2.20) are approximated as:

α1 =
vy + lf ψ̇

vx −
wt
2
ψ̇
− δ, α2 =

vy + lf ψ̇

vx +
wt
2
ψ̇
− δ, (2.21a)

α3 =
vy − lrψ̇

vx −
wt
2
ψ̇
, α4 =

vy − lrψ̇

vx +
wt
2
ψ̇
. (2.21b)

where wt denotes the vehicle track width. Specific values of the parameters

Bi and Ci are reported in the results of Chapter 7.
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2.2.2 Fiala Tire Model

The Fiala model, presented in [57], is a reduced complexity model that cal-

culates the longitudinal tire force as a linear function of the required ac-

celeration and the lateral tire force as a nonlinear function of the tire slip

angle.

The longitudinal force in the tire frame, fxi is calculated from the equation

fxi = βrµiFzi (2.22)

where βr ∈ [−1, 1] is referred to as the braking ratio. βr = −1 corresponds

to full braking and βr = 1 corresponds to full throttle. In this thesis we

consider an active safety application where βr ≤ 0.

Assumption 5 An actuator capable of augmenting the driver’s braking is

assumed available and the total braking force is denoted by Fb.

fyi is computed by the equation,

fyi =



















−Cαitan(αi) +
C2
αi

3ηµFzi

|tan(αi)|tan(αi)−
C3
αi

27η2µ2
i F

2
zi

tan3(αi),

if |αi| < αsl

−ηµiFzisgn(αi), if |αi| ≥ αsl

(2.23)

∀i where α denotes the tire slip angle, µ denotes the friction coefficient, and

Fz denotes the vertical load at each wheel. Cα is the tire cornering stiffness

and,

η =
√

µ2F 2
z − f

2
x/(µFz), (2.24)

which can be written as η =
√

1− β2
r . The lateral tire force characteristics

are shown in Figure 2.7 where the region in dashed lines is where |α| ≤ αsl

and,

αsl = tan−1(
3ηµFz

Cα
). (2.25)
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Figure 2.7: Lateral tire force characteristics compared to tire slip angle for

different levels of braking.

The tire slip angles αi in (2.23) are approximated as,

α1 =
ẏ + lf ψ̇

ẋ
− δ, α2 =

ẏ + lf ψ̇

ẋ
− δ, (2.26a)

α3 =
ẏ − lrψ̇

ẋ
, α4 =

ẏ − lrψ̇

ẋ
. (2.26b)

The same assumptions pertaining to the Pacejka tire model in section 2.2.1

are relevant here,

Assumption 6 In equation (2.23) the vertical forces Fzi are assumed con-

stant and determined by the vehicle’s steady state weight distribution when

no lateral or longitudinal accelerations act at the vehicle’s center of gravity.

Assumption 7 The friction coefficient is assumed to be known and to be

the same at all wheels, i.e., µi = µ, ∀i and constant over a finite time

20



CHAPTER 2. VEHICLE DYNAMICS 2.2. TIRE MODELS

horizon. At each time instant an estimate of µ is assumed available. See,

e.g., [102, 94, 88, 97] for an overview on friction estimation techniques. The

friction coefficient enters the system equations as a known parameter.

2.2.3 Linear Tire Force Model

For small slip angles and small slip ratio values, the linear tire force rela-

tionship between Y and X , defined in the Pacejka tire force model in section

2.2.1 can be approximated by

Y = (BCD)X (2.27)

where BCD in equation (2.27) represents the cornering stiffness Cα or the

longitudinal tire stiffness Cσ. Further, at small slip angles and slip ratio

values the tire slip angles are approximated as they are in the Fiala tire model

in section 2.2.2 equation (2.44). They are reproduced here for completeness,

αi =
ẏ + lf ψ̇

ẋ
− δ, i ∈ {1, 2} (2.28a)

αi =
ẏ − lrψ̇

ẋ
, i ∈ {3, 4} (2.28b)

Therefore, the front and rear lateral tire forces are approximated by,

fyi = Cα

(

ẏ + lf ψ̇

ẋ
− δ

)

, i ∈ {1, 2} (2.29a)

fyi = Cα

(

ẏ + lf ψ̇

ẋ

)

, i ∈ {3, 4} (2.29b)

while the longitudinal tire forces are approximated by

fxi = Cσiσi (2.30)
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and the slip ratios σi are calculated by

σi =











rwωi
vywi

− 1, if vywi > rwωi, vywi 6= 0, during braking

1−
vywi
rwωi

, if vywi < rwωi, ωi 6= 0, during acceleration
(2.31)

These relationships approximate the tire forces in the linear region of the tire

characteristics functions of section 2.2.1 Figure 2.5 and section 2.2.2 Figure

2.7. They will, of course, diverge from the actual tire forces quite significantly

at high slip values, but this problem may be mitigated by enforcing a tire

slip constraint.
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2.3 Bicycle Model

The bicycle model is derived from the Four Wheel Nonlinear Model presented

in section 2.1. It is based upon a simplification where the two front tires are

lumped together and the two rear tires are lumped together, as shown in

the diagram of Figure 2.8. The differential equations describing the model

are derived from the general rigid body dynamics from equation (2.1). They

take the form,

mẍ = mẏψ̇ + 2Fxf + 2Fxr, (2.32a)

mÿ = −mẋψ̇ + 2Fyf + 2Fyr, (2.32b)

Iψ̈ = 2lfFyf − 2lrFyr. (2.32c)

where m is the vehicle mass, I is the moment of inertia in the vertical axis,

lf and lr are the distances from the center of gravity to the front and rear

wheels, respectively. The state of the bicycle model is longitudinal velocity,

ẋ, lateral velocity, ẏ, and yaw rate ψ̇. The longitudinal and lateral tire forces

are denoted as Fxi and Fyi where i ∈ {f, r}. We make the following remark,

Remark 1 The tire forces Fxi and Fyi where i ∈ {f, r} in equation (2.32)

represent the forces generated by the contact of a single wheel with the ground.

The factor of 2 recovers the forces generated by both wheels in the front or

rear of the vehicle.
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ẋ

ẏ

Figure 2.8: Modeling notation.

Note that the tire forces may be calculated by any of the methods pre-

sented in section 2.2 and are not reproduced here. We make the following

assumption regarding the tire forces,

Assumption 8 The friction coefficient µi, slip angles αi, and slip ratios σi

are assumed to be equal at the left and right wheels, i.e., no µ-split surfaces

and the braking and acceleration is the same at the left and right sides.

The Bicycle Model is written in the following compact form,

ξ̇(t) = f 2w(ξ(t), u(t)), (2.33)

where the state vector ξ = [ẋ, ẏ, ψ, ψ̇, Y, X ] and the input u = δf . We make

the following assumption,

Assumption 9 The slip ratios σi and coefficient of friction µ are assumed

to be known and enter the system as known parameters.
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2.4 Spatial Vehicle Model

A particular vehicle model that will be important for the obstacle avoidance

model predictive controller of chapter 7 will be the Spatial Vehicle Model.

This model utilizes a coordinate transformation to derive the dynamics of

the vehicle about an arbitrary path, for our purposes we define this to be

the center line of the lane. The independent variable becomes distance along

the path s instead of time t. This transformation allows the position of the

vehicle to be known explicitly at each sampling instant of an optimization

routine, yet still retains the freedom of the solver to vary the velocity of the

vehicle, which is critical in safety applications.

Figure 2.9 shows the curvilinear coordinate system used in the spatial

model as well as the states of the model. The states of the spatial vehicle

model are defined as ξs = [ẏ, ẋ, ψ̇, eψ, ey]
T . Where ẏ, ẋ and ψ̇ are body

frame velocities, eψ and ey are the error of heading angle and lateral position

with respect to the center line of the lane.

The following kinematic equations can be derived from Figure 2.9:

vs = (ρ− ey) ψ̇s, (2.34a)

vs = ẋ cos(eψ)− ẏ sin(eψ), (2.34b)

where vs is the projected vehicle speed along direction of the lane center line,

ρ and ψs are the radius of curvature and the heading of the lane center line.

ψ̇s is the time derivative of ψs. The vehicle’s velocity along the path ṡ = ds
dt

is then given by

ṡ = ρ ψ̇s =

(

ρ

ρ− ey

)

(ẋ cos(eψ)− ẏ sin(eψ)) (2.35)

where s is the projected vehicle position along the lane center line. Using

simple relationships in the new curvilinear coordinate system and the fact

that,
dξs

ds
=
dξs

dt

dt

ds
, (2.36)

we can calculate the derivative of ξs with respect to s as follows ((·)′ represents
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sψ̇

ṡ

ρ

ye

sv
ẋẏ

sψ

ψe

Figure 2.9: The curvilinear coordinate system. The dynamics are derived
about a curve defining the center-line of a track. The coordinate s defines
the arc-length along the track. The relative spatial coordinates ey and eψ are
shown.

the derivative with respect to s):

ẏ′ = ÿ/ṡ; ẋ′ = ẍ/ṡ; ψ̇′ = ψ̈/ṡ; (2.37a)

e′ψ = (ψ − ψs)
′ = ψ̇/ṡ− ψ′

s; (2.37b)

e′y = ėy/ṡ = (ẋ sin(eψ) + ẏ cos(eψ))/ṡ (2.37c)

where ÿ, ẍ and ψ̈ are computed from the bicycle model in section 2.3 and

ξs denotes the vehicle state for the spatial model. We make the following

assumption

Assumption 10 A sensor exists that extracts the road information, ψ′
s, at
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each time instant as well as over a future given horizon. The signal enters

the model as a known parameter.

Therefore, the dynamics of the spatial vehicle model are written as,

ẋ′ =

(

ẏψ̇ +
1

m
(2Fxf + 2Fxr)

)

/ṡ, (2.38a)

ẏ′ =

(

−ẋψ̇ +
1

m
(2Fyf + 2Fyr)

)

/ṡ, (2.38b)

ψ̇′ =
1

I
(2lfFyf − 2lrFyr) /ṡ, (2.38c)

e′ψ = (ψ − ψs)
′ = ψ̇/ṡ− ψ′

s, (2.38d)

e′y = ėy/ṡ = (ẋ sin(eψ) + ẏ cos(eψ))/ṡ (2.38e)

where ξs = [ẋ, ẏ, ψ, ψ̇, eψ, ey], m is the vehicle mass, I is the moment of

inertia, and the forces Fji, j ∈ {x, y}, i ∈ {f, r} are calculated using the

Fiala tire model in section 2.2.2.

The spatial vehicle dynamics are compactly written as,

ξs
′

(s) = f s(ξs(s), us(s)). (2.39)

where the inputs are the front steering angle δf and the braking or throttle

effort βr ∈ [−1 1] with -1 corresponding to maximum braking and 1 corre-

sponding to maximum throttle (us = [δf , βr]), where βr is calculated from

the Fiala tire model in section 2.2.2. We make the following remark,

Remark 2 The time as function of s, t(s), can be retrieved by integrating

t′ = 1/ṡ if needed. That is,

t(sf)− t(s0) =

∫

sf

s0





1
(

ρ

ρ−ey

)

(ẋ cos(eψ)− ẏ sin(eψ))



 ds (2.40)
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2.5 Linear Vehicle Error Model

If the longitudinal velocity is kept constant and the slip values small, as in

nominal driving conditions, a linear vehicle model can be employed. Such a

model is very useful for robust control methods that are presented later. This

section introduces the required simplifications and assumptions and presents

the Linear Vehicle Model. The error dynamics of a vehicle are linear with

respect to the lateral motion within the lane by assuming a constant velocity,

Vx, and constraining the slip angles, αi, to operate in the linear region of

the tire forces [91]. The differential equations describing the motion are

compactly written as,

ẋ(t) = A x(t) +B u(t) + Eψ̇road(t) (2.41)

where the state is x(t) = [ey, ėy, eψ, ėψ]
T ∈ R

4×1 at time t and x0 = x(0).

The state of the system is in a road aligned coordinate frame and is shown

in Figure 2.10. The control input u = δ is the steering angle command and

the system matrices are

A =













0 1 0 0

0 −
2Cαf+2Cαr

mVx

2Cαf+2Cαr
m

−
2Cαf lf+2Cαrlr

mVx

0 0 0 1

0 −
2Cαf lf−2Cαr lr

IzVx

2Cαf lf−2Cαrlr
Iz

−
2Cαf l

2
f
+2Cαrl2r

IzVx













, (2.42a)

B =













0
2Cαf
m

0
2Cαf lf
Iz













, E =













0

−
2Cαf lf−2Cαrlr

mVx
− Vx

0

−
2Cαf l

2
f
+2Cαrl2r

IzVx













, (2.42b)

where A ∈ R
4×4, B ∈ R

4×1, and E ∈ R
4×1. m and Iz denote the vehicle

mass and yaw inertia and lf and lr denote the distances from the vehicle

center of gravity to the front and rear axles, depicted in Figure 2.8. eψ and

ey denote the vehicle orientation and lateral position, respectively, in a road

aligned coordinate frame.
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ye

ψe

roadψ

Figure 2.10: A road aligned coordinate frame illustrating the error states

with respect to the road, ey and eψ.

The tire cornering stiffness is denoted Cαf and Cαr for the front and rear

tires, respectively. The lateral tire force components in the vehicle body

frame are modeled as,

Fyi = −Cαiαi, i ∈ {f, r} (2.43)

where αi is the slip angle at wheel i. We assume only the steering angles

of the front wheels can be controlled, i.e., δf = δ and δr = 0. In addition,

an actuator which corrects the driver commanded steering angle, such that

δ = δd + δc, is available, where δd is the driver commanded steering angle

and δc is the correcting steering angle component. The tire slip angles αi in

(2.43) are approximated as,

αf =
vy + lf ψ̇

vx
− δ, αr =

vy − lrψ̇

vx
(2.44)

We make use of the following assumptions,

Assumption 11 The friction coefficient is assumed to be known and to be

the same at all wheels, i.e., µi = µ, ∀i and constant over a finite time

horizon. At each time instant an estimate of µ is assumed available.
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Assumption 12 The signal ψ̇road is assumed to be known and every time

instant an estimate of ψ̇road is available over a finite time horizon. See [10]

for an overview of sensing technologies that can be used to obtain this signal.

The linear vehicle model is written in the following compact form,

ξ̇(t) = f lin(ξ(t), u(t), p(t)), (2.45)

where the state ξ = [ey, ėy, eψ, ėψ]
T , the input u = δ, and the parameter

p = ψ̇road.
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2.6 Safety Constraints

We recall that the overall aim of the safety system proposed in this thesis is

to keep the vehicle in the lane and avoid collision with obstacles while main-

taining a stable vehicle motion. In this section, we express the requirements

that the vehicle stays in the lane while operating in a stable operating region

as constraints on the vehicle state and input variables.

Let eyi, i ∈ {1, 2, 3, 4} be the distances of the four vehicle corners from

the lane centerline. eyi is written as

ey1 = ey +
c

2
cos(eψ) + a sin(eψ)

ey2 = ey −
c

2
cos(eψ) + a sin(eψ)

ey3 = ey +
c

2
cos(eψ)− b sin(eψ)

ey4 = ey −
c

2
cos(eψ)− b sin(eψ)

(2.46)

where c is the vehicle width, a and b are the distances of the center of gravity

from the front and rear vehicle bumpers, respectively. Note these lengths

differ from wt, lf , and lr, which measure the chassis for the vehicle dynamics.

a, b, and c measure the body of the vehicle to geometrically impose the

safety constraints. The requirement that the vehicle stays in the lane is then

expressed as,

− eymax ≤ eyi ≤ eymax , ∀i. (2.47)

In addition to staying in the lane, we require that the vehicle operates

in a region of the state space where the vehicle is easily maneuverable by a

normally skilled driver. Consider, for example, the tire force characteristics

shown in Figure 2.7. In the shaded region, the nonlinearity in the lateral

tire force characteristics is less evident. In this region the vehicle behavior is

predictable by most drivers and Electronic Stability Control (ESC) systems

are inactive [50, 96]. The requirement that the vehicle operates in stable

operating conditions is thus ensured by limiting the tire slip angles αi,

αimin
≤ αi ≤ αimax, ∀i. (2.48)
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The constraints (2.47)-(2.48) are compactly written as,

h(x(t), u(t), p(t), t) ≤ 0, (2.49)

where 0 is the zero vector with appropriate dimension. We make the following

remark regarding feasibility.

Remark 3 The constraints on the state may be made soft by introducing a

slack variable ε and enforcing the modified constraints

h(x(t), u(t), p(t), t) ≤ 1ε, (2.50a)

ε ≥ 0. (2.50b)

Note that any constraints on the input u(t) remain hard as these constraints

reflect physical limitations of the actuators.
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Chapter 3

Driver Behavior Models

We utilize a model of the driver’s steering behavior. In general, an accurate

description of the driver’s behavior requires complex models accounting for

a large amount of exogenous signals [19, 98]. We are interested in very

simple model structures, enabling the design of a low complexity model-

based threat assessment and control design algorithm. In this thesis the

driver’s steering behavior is described by a model, where the vehicle state

and the road geometry information are exogenous signals, the steering angle

is the model output and the steering model parameters are estimated based

on the observed behavior of the driver. The modeling and estimation of the

nominal driver behavior considered in this thesis was presented first in [29].

In this chapter we will detail the nominal model and extend the model to

include uncertainty in the driver’s behavior.
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ye

ψe

roadψ

ψ

ψ
lpe

look ahead

point

Figure 3.1: A road aligned coordinate frame illustrating the error states with
respect to the road, ey and eψ, as well as the driver model coordinates, the

look-ahead point, lp, the error angle of the road at the look-ahead point elpψ ,
as well as the inertial frame angles of the vehicle ψ and road ψroad.
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3.1 Nominal Driver Model

Define the orientation error elpψ , w.r.t. a look-ahead point as in Figure 3.1,

elpψ = ψ − ψlpd = eψ +∆ψroad, (3.1)

where ψlproad is the desired orientation at time t + tlp, with t the current

time, ∆ψroad = ψroad − ψ
lp
road and tlp the preview time that can be mapped

into the preview distance dlp under the assumption of constant speed ẋ. We

compute an estimate of the driver commanded steering angle δ̂d as,

δ̂d = Kyey +Kψe
lp
ψ , (3.2a)

δ̂d = Kyey +Kψeψ +Kψ∆ψroad, (3.2b)

with Ky and Kψ as gains that are, in general, time varying and are updated

online. Clearly, ∆ψroad in (3.1) depends on the preview time tlp that, in our

modeling framework, is considered as a parameter of the driver model. We

also remark that the steering model (3.17) is velocity dependant since ∆ψroad

also depends on the vehicle speed ẋ.

Estimation results of the driver model parameters in (3.1)-(3.17), ob-

tained using a nonlinear recursive least squares algorithm, are presented in

[29] for both normal and aggressive driving styles. The estimation results

for nominal driving are reported in Figure 3.2 and for aggressive driving in

Figure 3.3.

The feedback equation for the driver model is compactly written as,

δ̂d = Fx(t) +G∆ψroad (3.3)

where F and G are defined by the particular vehicle model employed.

3.1.1 Recursive Least Squares Estimation

In this section the Recursive Least Squares Parameter Estimation algorithm

is presented by which the parameters of the driver model of Equation (3.21)
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are estimated. This is run online and updated in real-time and will con-

verge to different driver behavior after sufficient excitation of the estimation

algorithm. A linear recursive estimator is written as,

yk = Hkx+ vk, (3.4a)

xk = x̂k−1 +Kk(yk −Hkx̂k−1). (3.4b)

where Hk is a row vector and Kk ∈ R
n×k is the estimator gain matrix. The

term yk −Hkx̂k−1 is the innovation. The current estimation error is denoted

as,

ǫk = x− x̂k. (3.5)

The mean of this error is computed as follows,

E(ǫk) = E(x− x̂k), (3.6a)

= (I −KkHk)E(ǫk−1)−KkE(vk), (3.6b)

obtained by substitution of (3.4) in (3.5) where I ∈ R
n×n is the identity ma-

trix. To determine the optimal gain matrix Kk we minimize the aggregated

variance of the estimation errors at time k,

Jk = E(‖x− x̂k‖
2), (3.7a)

= E(ǫTk ǫk), (3.7b)

= E(tr(ǫkǫ
T
k )), (3.7c)

= tr(Pk) (3.7d)

where tr is the trace operator1 and Pk = E(tr(ǫkǫ
T
k )) is the estimation error

covariance. Pk is found by substitution of Equation (3.6),

Pk = E
(

((I −KkHk)E(ǫk)−Kkvk)((I −KkHk)E(ǫk)−Kkvk)
T
)

, (3.8a)

= (I −KkHk)Pk−1(I −KkHk)
T +KkRkK

T
k . (3.8b)

1The trace of a matrix is the sum of its diagonal elements.
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where Rk = E(vkv
T
k ) is the covariance of vk. Note the estimation error ǫk−1

at time k − 1 is independent of the measurement noise vk at time k, i.e.

E(vkǫ
T
k−1) = E(vk)E(ǫk−1) = 0. Equation (3.8) is the recurrence for the

covariance of the least squares estimation error. Note that Pk is a covariance

matrix and is positive definite, Pk ≻ 0. Finding the value of the optimal

gain matrix Kk that minimizes the cost function in Equation (3.7) is found

by taking the partial derivative of Jk with respect to Kk and setting it equal

to 0. We make the following remarks,

Note 1 The derivative of a function f with respect to a matrix A = (aij) is

a matrix ∂f

∂A
=
(

∂f

∂aij

)

.

Note 2 The partial derivative ∂
∂A
tr(ABAT ) = 2AB when B is symmetric.

Therefore,
∂Jk
∂Kk

= 2(I −KkHk)Pk−1(−H
T
k ) + 2KkRk (3.9)

and setting Equation (3.9) equal to zero and solving forKk yields the optimal

gain matrix,

Kk = Pk−1H
T
k (HkPk−1H

T
k +Rk)

−1. (3.10)

By setting Sk = HkPk−1H
T
k +Rk we write,

Kk = Pk−1H
T
k S

−1
k . (3.11)

A simple substitution of Equation (3.11) into (3.8) yields the recursion,

Pk = (I −KkHk)Pk−1. (3.12)

Note 3 The above Pk, Rk, and Sk are symmetric.
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For our problem of estimating the parameters for the nominal driver

model, the estimator variables take the following form,

yk = δd, actual driver steering angle, (3.13a)

H = [ey e
lp
ψ ], state matrix, (3.13b)

x = [Ky Kψ]
T , parameters to be estimated, (3.13c)

Then, the parameters are updated as follows,

[

Ky

Kψ

]

k

=

[

Ky

Kψ

]

k−1

+Kk

(

δd,k − [ey e
lp
ψ ]k

[

Ky

Kψ

]

k−1

)

, (3.14)

where Kk and Pk are updated by Equations (3.11) and (3.8), respectively.

The initial values of the estimated parameters and covariance matrix may be

set using prior knowledge, or if none is available one may set P =∞I ∈ R
n×n.

For our application the initial values are set as follows,

P =

[

10 −0.0005

−0.0005 25.7

]

, x =

[

0

0.2

]

. (3.15)

and the results from the estimation algorithm are reported in Figure 3.2 for

nominal driving and Figure 3.3 for aggressive driving.

Note that the look ahead point is also estimated in this framework, which

gives rise to the nonlinearity from the bilinear term in Equation (3.17), i.e.

Kψe
lp
ψ . The estimation routine described in this section is for linear least

squares. We handle this nonlinearity by discretizing the look ahead point

and estimating the optimal parameters for each discrete distance and then

choosing the set of parameters that minimize the cost.
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Figure 3.2: Estimation results from [29] of the nonlinear estimation of the
feedback parameters for the driver model of (3.17) for nominal driving.
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Figure 3.3: Estimation results from [29] of the nonlinear estimation of the
feedback parameters for the driver model of (3.17) for aggressive driving.
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3.2 Attentive Driver Model

In this section the nominal driver model of the previous section §3.1 is

adapted to incorporate obstacles if the driver is deemed attentive and aware

of an upcoming roadside obstacle.

Remark 4 A driver monitoring system capable of determining driver dis-

traction, such as the one suggested in [89], is assumed available.

y

look ahead

point

Y

orw

Figure 3.4: The road-aligned coordinate frame adapted to accommodate

roadside obstacles.

Consider the sketch in Figure 3.4. A roadside obstacle has been added

but is otherwise the same as Figure 3.1. Denote by wor, wol, the width of

an obstacle located at the right and left lane borders, respectively, which are

zero in case no obstacle is present. We introduce the position error,

elpy = ey −
1

2
wor +

1

2
wol, (3.16)

which is the distance of the vehicle’s center of gravity from the center of the

free portion of the lane. Then, the driver model is adapted from Equation

3.17 to incorporate the variable elpy and is written as,

δ̂d = Kye
lp
y +Kψe

lp
ψ . (3.17)
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3.3 Uncertain Driver Model

While the nominal driver model of section 3.1 represents the expected nom-

inal driver behavior, this equation fails to capture the uncertainty in the

driver’s behavior. We assume the actual value of δd is assumed to lie in an

interval centered at δ̂d. Then,

W(x) =
{

δd : ‖δd − δ̂d‖ ≤ ǫ > 0, ‖δd‖ ≤ δd,max

}

, (3.18)

where ǫ is a parameter that must be chosen. The constraint δd ∈ W(x) can

also be expressed in terms of a polytopic contraint in R, independent of x,

by assuming the worst-case approximation. That is,

δd ∈ W(x)⇒ δd ∈ {δ̂d ⊕W} ⊆ R (3.19)

Note 4 The Monkowski sum of two polytopes P and Q is a polytope

P ⊕Q := {x+ q ∈ R
n : x ∈ P, q ∈ Q}. (3.20)

dδ
dδ̂

⊕W}dδ̂{
R

Figure 3.5: A drawing of an uncertain interval set δ̂d ⊕ W centered on δ̂d

where the actual value δd lies somewhere in the set.

The feedback equation for the driver model is compactly written as,

δ̂d = Fx(t) +G∆ψroad + w(t), (3.21)

where w(t) ∈ W, and F and G are defined by the particular vehicle model

employed.
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3.4 Stochastic Driver Model

Another useful method to incorporate uncertainty in the driver prediction is

to capture the uncertainty as a probability distribution, measured from real

data. In the literature accurate driver models often predict a distribution over

future driver inputs [86, 93, 45, 5]. By explicitly considering this distribution,

we can convert the uncertainty in the behavior of the driver to probabilistic

constraint satisfaction in the model predictive controller.

We use the value of δ̂d obtained in (3.17) as a linear state-dependent

estimate of the driver’s steering input. The actual value of δd is assumed to

lie in a normal distribution centered at δ̂d. Then,

δd ∼ N (δ̂d,Σ), (3.22)

where Σ is the covariance and we will denote the stochastic driver input as

w(t) and the mean-value δ̂d(t) as w̄(t). The feedback equation for the driver

model is compactly written as,

u(t) = Fξ(t) +G∆ψroad + w(t) + v(t) (3.23)

where w(t) ∼ N (w̄(t),Σ), F = [Ky, 0, Kψ, 0] ∈ R
1×4 and G = [Kψ] ∈ R.

Clearly, u(t) = δ̂d(t) + w(t) + v(t) where v(t) has been introduced as an

exogenous input signal and will be determined by a robust control law.

−0.2 −0.1 0 0.1 0.2 0.3
0

0.005

0.01

0.015

)t(w

))t(
w(

p

Figure 3.6: A normal distribution over the uncertain driver input w at time

t given δ̂d = 0 and Σ = 0.035 where w(t) ∼ N (δ̂d,Σ).
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3.5 Driver-in-the-Loop Vehicle Model

Consider the Linear Vehicle Model of §2.5 and the Uncertain Driver Model

of §3.3 and the Stochastic Driver Model of §3.4. Both sections §3.3 and §3.4

presented methods to model the uncertainty of the driver’s inputs, set-based

and probabilistically, respectively. In this section we will call the uncertainty

w(t) and this will refer to either approach.

We write the vehicle dynamics of Equation (2.41) in closed-loop with the

uncertain driver model as

ẋ(t) = Adm x(t) +B v(t) + Edmp(t) +Bw(t) (3.24)

where Adm = (A + BF) ∈ R
4×4 is the closed-loop system matrix, Edm ∈

R
4×2 is the augmented parameter matrix where Edm = [E BG], p(t) =

[ψ̇road ∆ψroad]
T ∈ R

2×1, and w(t) is the additive disturbance vector. By

propagating the state according Equation (3.24) a prediction that incorpo-

rates both the vehicle dynamics and the driver’s behavior is obtained. The

signal v(t) has been introduced as an exogenous input. The closed-loop driver

controlled vehicle model presented here is shown in block diagram form in

Figure 3.7.

B

∫
ẋ x

A

C

roadψ̇

u

FG
roadψ∆

v

w
Driver-in-the-Loop Model

Vehicle

+
+
+

+
+
+

+
+

Figure 3.7: Block diagram illustrating the structure of the simulated system.

The actual plant is not shown.
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Chapter 4

Driver Assistance Systems

In this chapter a brief overview of existing Advanced Driver Assistance Sys-

tems (ADAS) will be introduced. ADAS are designed to essentially augment

the sensing capabilities of the driver and provide more information than a

human would otherwise be able to obtain. In addition, ADAS can process

and interpret data at a much higher frequency than a human driver, which is

especially important at high speeds. Recently, many automobile manufactur-

ers have started implementing such systems. Examples include, but are not

limited to, systems such as in-vehicle navigation systems with GPS (global

positioning system) and TMC (traffic message channel) to provide up-to-date

traffic information, ACC (adaptive cruise control), lane departure warning

system, lane change assistance, collision avoidance system, intelligent speed

adaptation, night vision, adaptive light control, pedestrian protection sys-

tem, automatic parking, traffic sign recognition, blind spot detection, driver

drowsiness detection, vehicular communication systems, hill descent control,

etc. Although these systems are very different they share a common goal: to

increase traffic safety. ADAS can typically be classified into two categories,

Reaction Systems and Warning Systems [82], where reaction systems apply a

control to keep the driver safe and warning systems simply warn the driver if

the system predicts a threat to the driver’s safety. An example of a reaction

system is a CAS (collision avoidance system) and an example of a warning

system is a LDWS (lane departure warning system). The effectiveness of
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such systems rely heavily on the sensors which enable them. Typically these

sensors involve video sensors, radar, lidar, and infrared sensors. See Figure

4.1 for an example of a sensor enabled ADAS.

Figure 4.1: This figures shows a sketch of a front mounted sensor, e.g. a radar,

providing range and range rate to the preceding vehicle. These measurements

can be used to implement an ACC (adaptive cruise control) system that will

maintain a constant distance or time gap to the preceding vehicle.

Two important safety systems are Electronic Stability Control (ESC)

systems and Lane Keeping Systems (LKS), both of which will be considered

in this thesis. ESC, or sometimes referred to as dynamic stability control, is

a technology that improves the safety of a vehicle by detecting and reducing

the loss of traction. When the vehicle loses traction and steering control,

for example during a cornering maneuver, the ESC will brake the vehicle’s

wheels independently in order to recover stability and steer the vehicle to

where the driver intends to go. Figure 4.2 and 4.3 show examples of an

understeered and oversteered vehicle, respectively. An ESC system would

be able to detect and control the vehicle to avoid such situations. It has

been estimated that one-third of fatal accidents could have been prevented

by such technology [85, 40].
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Figure 4.2: A depiction of a car during a maneuver that is understeered: the

car does not turn enough and leaves the road.

Figure 4.3: A depiction of a car during a maneuver that is oversteered: the

car turns more sharply than intended and could go into a spin.

Figure 4.4 shows a plot where the slip angles of the front and rear tires

have been constrained to lie within the linear operating region of the tire

forces, as presented in §2.2, and thus avoid under- or oversteering. The

framework to achieve this will be presented in Chapter 7.
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Figure 4.4: An electronic stability control system can constrain the tire slip

angles to lie within the linear operating region of the tire forces and thus be

easily maneuverable by a driver.

A Lane Keeping System is designed to detect when the vehicle is about

to depart the roadway, and if no action is taken by the driver, automatically

take steps to ensure the vehicle stays in its lane.

Figure 4.5: A sketch of a vehicle with a lane detection system running to

support safety systems such as Lane Keeping Systems.

The ability to implement systems such as ESC and LKS is made easier

by the parallel development of sensors, such as those developed by Mobileye

[1], in order to detect the lanes using an affordable optical camera system.
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Figure 4.6: Safety system architecture

A vehicle safety specific DAS is devoted to the task of deploying auto-

mated interventions only in safety critical situations. Typically this type

of safety system is modular. Figure 4.6 shows an example of how such an

architecture can appear.

The environment information and state estimation and parameter iden-

tification blocks provide various signals, or estimated signals, that the safety

system needs in order to operate. This can include vehicle states such as

velocity and yaw rate, or external information such as road curvature, or

friction coefficient estimation. In general not every needed signal is avail-

able and estimation techniques must be employed in order to recover the

desired information. A wide range of estimation problems are treated in

[23, 41, 18, 61, 24, 25].

The threat assessment module deals with the task of determining whether

interventions are necessary and plays an important role in the interaction

with the driver. The threat assessment module repeatedly evaluates the

driver’s ability in maintaining safety in each situation and this information

is used by the decision making module in order to decide whether and how to

assist the driver. It is a challenge for an active safety system to properly as-
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sess when to intervene. In the literature, a large variety of threat assessment

and decision making approaches can be found [22, 78, 62, 29]. In the sim-

plest approaches, used in production vehicles, automated steering or braking

interventions are issued when simple measures like the time to collision [22]

or time to line crossing [78] pass certain thresholds.

The overall aim of the framework presented in this thesis is to aid in

the design of an Advanced Driver Assistance System in which the system is

more informed and can make safer, more coordinated, and smarter use of the

roadway. A sketch of the semi-autonomous ADAS is shown in Figure 4.7.

Figure 4.7: A sketch of the structure of the ADAS designed in this thesis:

the overall goal is to be more informed in order to make safer, smarter, and

more coordinated decisions about the safety of the driver.

The focus of this thesis is on the control design where the controller is

informed by the Human and Environment modules of Figure 4.7. Simple

driver models have been presented in Chapter 3. In general, an accurate

description of the driver’s behavior requires complex models accounting for

a large amount of exogenous signals [19, 98, 76]. The Environment module

can provide information such as location of obstacles, pedestrians and road

boundaries, as well as provide parameter identification such as the real-time

estimation of the friction coefficient. See [59, 58, 26, 27] for recent work on
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online friction estimation. We abandon the modular architecture in favor of

a unified approach where the planning, threat assessment, and control of the

vehicle is combined into a single optimization problem. The formulation of

this optimization problem is presented in Chapter 5. Various planning meth-

ods are explored in Chapter 6 and the unified safety framework is presented

in Chapter 7.
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Chapter 5

Model Predictive Control

In this chapter we present the Model Predictive Control methodology. Be-

cause of its capability to systematically handle system nonlinearities and

constraints, work in a wide operating region and close to the set of admissi-

ble states and inputs, Model Predictive Control (MPC) has been shown to be

an attractive method for solving the path planning and control problems we

are considering in this thesis [35, 32]. MPC is a control technique where the

current input is found by solving a Constrained Finite Time Optimal Control

Problem (CFTOC). At each sampling instant, starting at the current state

of the system, an open-loop optimal control problem is solved over a finite

horizon. The input is applied to the plant only during the following sampling

interval [t, t+1]. At the next time step, t+1, a new optimal control problem

based on new measurements of the updated state is solved over the shifted

horizon. MPC has been widely used in industrial process and control [90]

because of its ability to cope with hard constraints on controls and states

where high efficiency is achieved at operating points at the boundary of the

sets of admissable states and controls. The reader is referred to the following

papers for an overview of the basics of MPC theory [74, 80, 81, 83].

In this chapter we introduce the MPC problem formulation. This is used

in the remaining chapters to formulate the threat assessment, path planning,

and control problems. Section 5.2 introduces the linear MPC theory and some

stability results. Further, in section 5.3, this theory will be used to formulate
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a Robust MPC problem where constraint satisfaction can be guaranteed

even in the presence of uncertainties, such as the uncertain driver model

introduced in section 3.3. Section 5.1 introduces the general formulation for

the Nonlinear MPC problem.
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5.1 Nonlinear Model Predictive Control

Consider the various dynamic systems presented in Chapter 2. Without loss

of generality we discretize the dynamics with a fixed sampling time Ts to

obtain,

ξ(t+ 1) = f d(ξ(t), u(t)). (5.1)

where f d(·, ·) : Rn × R
m → R

n, with f d(·, ·) ∈ C1, defines the state update

function and ξ ∈ R
n is the state vector and u ∈ R

m is the control input.

Note the superscript (·)d emphasizes the discrete dynamics, as opposed to

the continuous dynamics presented in Chapter 2. We drop the superscript

for simplicity for the remainder of this section. The origin of the state space

is an equilibrium point , i.e. f(0, 0) = 0. The system (5.1) is subject to the

following state and input constraints,

ξ(t) ∈ X , u(t) ∈ U , ∀t ≥ 0 (5.2)

where X ⊆ R
n and U ⊆ R

m are polyhedra [13]. Assume that a full measure-

ment or estimate of the state ξ(t) is available at the current time t. Then,

the finite time optimal control problem PNL to be solved at each time step,

PNL : min
Ut,Ξt

JN(Ξ(t), U(t)) (5.3a)

s.t. ξk+1,t = f(ξk,t, uk,t), k = t, ..., N − 1, (5.3b)

ξk,t ∈ X , k = t+ 1, ...t+N − 1, (5.3c)

uk,t ∈ U , k = t, ..., t +N − 1, (5.3d)

ξt,t = ξ(t), (5.3e)

ξt+N,t ∈ Xf , (5.3f)

is solved at time t, where ξk,t denotes the predicted state at time t + k

obtained by applying the control sequence Ut = {ut,t, . . . , ut+k,t} to the

system (5.1) with ξt,t = ξ(t). N ∈ 1
Z
+ denotes the prediction horizon.

Ξt = {ξt,t, . . . , ξt+k,t} is the state trajectory obtained by applying the control

1
Z
+ is the set of positive integers
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sequence Ut to the system (5.1) starting from the initial state ξ(t). Equation

(5.3f) is the terminal constraint and Xf is a polytope. The cost function

JN (·, ·) : Rn × R
Nm → R

+ is generally defined as,

JN(Ξ(t), U(t)) =

N−1
∑

k=t

l(ξ(k), u(k)) + P (ξ(t+N)), (5.4)

where l(·, ·) ∈ C1 and l(·, ·) : Rn × R
m → R

+ is the stage cost and P (·) :

R
n → R

+ is the terminal cost.

Let Φ(t; ξ, Ut) denote the solution of system (5.1)-(5.2) at time t controlled

by Ut when ξ(0) = ξ. Denote by U∗
t = {u∗t,t, ..., u

∗
t+N−1,t} the optimal solution

of problem PNL of equations (5.3) at time t and J∗
N(·, ·) the optimal value fun-

cion. Then, the optimal state trajectory is Φ∗(t; ξ, U∗
t ) = {ξ

∗
t,t, ..., ξ

∗
t+N−1,t},

which we write as Ξ∗
t for simplicity. The first sample of U∗

t is applied to the

system (5.1),

u(t) = u∗t,t(ξ(t)). (5.5)

At the next sampling time the optimization problem PNL is solved over the

shifted horizon based on the new state ξ(t+ 1).

The problem PNL is a nonlinear and, in general, non-convex optimization

problem with 2N optimization variables, nN nonlinear equality constraints

(constraints (5.3b)), and a number of linear constraints (constraints (5.3c)-

(5.3d)) depending on the polytopes X and U [28]. The control law (5.3)-

(5.5) is referred to as Non-Linear Model Predictive Control (NLMPC). Let

κt(·) : R
n → R

m denote the NLMPC law that associates the optimal input

u∗t,t with the current state ξ(t), κt(ξ(t)) = u∗t,t. Then, the closed-loop system

obtained by solving PNL at time t with the NLMPC law (5.3)-(5.5)

ξ(k + 1) = f(ξ(k), κt(ξ(k)))
△
= fcl(ξ(k), k), k ≥ 0. (5.6)

Remark 5 Note the difference in notation used to distinguish between the

input u(t + k)∗ applied to the plant at time t + k, and the optimizer u∗t+k,t
of the problem PNL at time t + k obtained by solving (5.3) at time t with

ξt,t = ξ(t).
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5.2 Linear Time Varying Model Predictive

Control

In this section the concept of Linear Time Varying Model Predictive Control

(LTVMPC) is introduced. This is a suboptimal MPC algorithm that has a

lower complexity than the general Nonlinear MPC law of problem PNL in

Equations (5.3)-(5.3). At each time step the model in (5.1) is approximated

by a linear time varying model. In this section we will follow closely the

notation of [38]. Further references regarding LTVMPC can be found in

[21, 65, 67, 69, 100]. We define the system

ξ̂0(k + 1) = f(ξ̂0(k), u(k)), (5.7a)

u(k) = u0, (5.7b)

ξ̂0(0) = ξ0 (5.7c)

where ξ0 ∈ X and u0 ∈ U . Denote by ξ̂0(k), ∀k ≥ 0 the state trajectory

obtained by applying the input sequence u(k) = u0, ∀k ≥ 0 to the system

(5.7) with ξ̂0(0) = ξ0. The system (5.1) can be approximated by the following

LTV system,

δξ(k + 1) = Ak,0δξ(k) +Bk,0δu(k), (5.8)

where Ak,0 ∈ R
n×n and Bk,0 ∈ R

n×m are defined as,

Ak,0 =
∂f

∂ξ
|ξ̂0(k),u0 , Bk,0 =

∂f

∂u
|ξ̂0(k),u0, (5.9a)

δξ(k) = ξ(k)− ξ̂0(k), δu(k) = u(k)− u0, (5.9b)

The system (5.8) can be rewritten as,

ξ(k + 1) = Ak,0ξ(k) +Bk,0u(k) + dk,0(k), (5.10)

where dk,0(k) = ξ̂0(k + 1)−Ak,0ξ(k)− Bk,0u(k) for k ≥ 0.

The LTV system of Equation (5.8) describes the deviation of the nonlin-
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ear system (5.1) from the state trajectory ξ̂0(k) when a constant sequence

u0 is applied. In other words, system (5.8) and (5.10) are identical first or-

der approximations of the system (5.1) around the nominal state trajectory

ξ̂0(k), k ≥ 0.

Consider the LTV Model in Equation (5.10) and the cost function in (5.4).

Assume that a full measurement or estimate of the state ξ(t) is available at

the current time t. Then, the finite time optimal control problem PLTV to

be solved at each time step,

PLTV : min
Ut,Ξt

JN(Ξ(t), U(t)) (5.11a)

s.t. ξk+1,t = Ak,tξk,t +Bk,tuk,t + dk,t, (5.11b)

k = t, ..., N − 1, (5.11c)

ξk,t ∈ X , k = t + 1, ...t+N − 1, (5.11d)

uk,t ∈ U , k = t, ..., t+N − 1, (5.11e)

ξt,t = ξ(t), (5.11f)

ξt+N,t ∈ Xf , (5.11g)

is solved at time t, where ξk,t denotes the predicted state at time t + k

obtained by applying the control sequence Ut = {ut,t, . . . , ut+k,t} to the

system (5.11b) with ξt,t = ξ(t). N ∈ Z
+ denotes the prediction horizon.

Ξt = {ξt,t, . . . , ξt+k,t} is the state trajectory obtained by applying the control

sequence Ut to the system (5.11b) starting from the initial state ξt,t = ξ(t).

Equation (5.11g) is the terminal constraint and Xf is a polytope. The ma-

trices Ak,t, Bk,t, and the vector dk,t are defined in (5.9) and (5.10). Note

the fixed index 0 has been replaced by t. The solution to problem PLTV is

U∗
t = {u∗t,t, . . . , u

∗
t+k,t} and the first sample is applied to the system,

u(ξ(t)) = u∗t,t. (5.12)

Remark 6 The cost funcion (5.11a) is convex piecewise linear or quadratic,

the constraints (5.11b)-(5.11g) are linear, therefore the optimization problem

(5.11) is convex. It can be solved with efficient Linear Programming (LP)
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or Quadratic Programming (QP) solvers, if the functions l(ξ, u) and P (ξ) in

(5.4) are linear or quadratic, respectively.

Note that although the computational complexity of LTVMPC in PLTV is

greatly reduced compared the general nonlinear formulation of problem PNL,

the formulation in Equations (5.11) requires N linearizations of the model

(5.1), which can be expensive for higher order models with long prediction

horizons.

Assumption 13 To reduce the complexity of the LTVMPC law in (5.11)-

(5.12) we assume Ak,t = At and Bk,t = Bt for k = t, ...t + N − 1. i.e. the

model is held constant over the prediction horizon.

Stability is not guaranteed in Model Predictive Control and the reader is

referred to the survey paper [81] for a thorough discussion on stability and

optimality and the thesis [38] for a stability analysis of the LTVMPC.
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5.3 Robust Model Predictive Control

The formulation for Nonlinear Model Predictive control and Linear Time

Varying Model Predictive Control was presented in §5.1 and §5.2, respec-

tively. The formulations in problems PNL and PLTV have been studied ex-

tensively and have strong theoretical results regarding stability and feasibil-

ity. However, they do not address the scenario when the predicted system

evolution differs from the actual system behavior. Robustness against uncer-

tainties is an important discussion for practical applications as uncertainty

can arise from modeling errors, unknown or neglected system dynamics, or

exogenous disturbances. In addition, explicitly modeling an uncertainty can

provide robustness guarantees against known or bounded disturbances if a

robust approach is adopted.

Although employing a Model Predictive Control approach introduces

feedback into the system, and therefore an inherent degree of robustness

over an open-loop system, an analysis of the robustness for a given MPC

control law is difficult [9]. The first appearance of Robust Model Predic-

tive Control was proposed in [20] where a worst-case objective function was

considered, i.e. the worst realization of the uncertainty. This approach is

commonly known in the literature as Min-Max Model Predictive Control. In

this method closed-loop predictions are obtained that contain the spread of

trajectories resulting from the influence of uncertainty. This, however, leads

to controllers of comparably high computational complexity. In this thesis

two methods are proposed to incorporate robustness in the MPC problem to

handle uncertain driver models. Section 5.3.1 handles the uncertainty using

set-based methods and section 5.3.2 converts the uncertainty in the driver

model to probabilistic constraints in the optimization problem.

5.3.1 Set-based Robust MPC

A method, proposed in [73] and adopted in this thesis, is the Tube-Based

Robust MPC. This form of Robust MPC builds upon set invariance theory

and its ideas can be traced back to [101, 11, 51]. The basic idea is to essen-

tially tighten the constraints of the original nominal system while bounding
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the error between the nominal and the uncertain system state by a robust

positively invariant set. This will allow the uncertain system to evolve in a

set centered on the nominal system state trajectory while the original con-

straints are satisfied at all times, even in the presence of uncertainty. In

this section we first introduce set invariance theory in §5.3.1 and provide all

the required assumptions and definitions. Then, in §5.3.1 the Robust MPC

control law is proposed that is later studied in the simulations of §7.4.1.

Background on Set Invariance Theory

In this section several definitions are provided that will be important in

developing the Robust MPC later in this thesis. We follow the notation used

in [64].

Denote by fa the constrained, discrete time linear autonomous system

perturbed by a bounded, additive disturbance. The system dynamics are

x(t + 1) = fa(x(t), w(t)) = Ax(t) + w(t) (5.13)

where x(t) and w(t) denote the state and the disturbance vectors. System

(5.13) is subject to the constraints

x(t) ∈ X ⊆ R
n, w(t) ∈ W ⊆ R

d, (5.14)

where X and W are polyhedra that contain the origin in their interiors. For

the autonomous system (5.13)-(5.14),

Definition 1 (Reachable set for autonomous systems) we define the one-step

robust reachable set for initial states x contained in the set S as

Reachfa(S,W)
△
= {x ∈ R

n|

∃ x(0) ∈ S, ∃ w ∈ W : x = fa(x(0), w)}.
(5.15)

For the nominal system, i.e., with w(t) = 0, ∀t, the one-step reachable set is
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defined as

Reachfa(S)
△
= {x ∈ R

n|∃ x(0) ∈ S : x = fa(x(0))}. (5.16)

Similarly, for systems with inputs

x(t + 1) = f(x(t), u(t), w(t)) = Ax(t) +Bu(t) + w(t), (5.17)

subject to the constraints

x(t) ∈ X , u(t) ∈ U ⊆ R
m, w(t) ∈ W, (5.18)

the one-step robust reachable set is defined as:

Definition 2 (Reachable set for systems with external inputs) the one-step

robust reachable set for initial states x contained in the set S is

Reachf (S,W)
△
= {x ∈ R

n|

∃ x(0) ∈ S, ∃ u ∈ U , ∃ w ∈ W : x = fa(x(0), u, w)}.
(5.19)

Therefore, all states contained in S are mapped into the reach set Reachfa

under the map fa for all disturbances w ∈ W, and under the map f for all

inputs u ∈ U and all disturbances w ∈ W. We will next define robust in-

variant sets. Robust invariant sets are computed for the autonomous system

(5.13)-(5.14). We define the robust invariant set as follows:

Definition 3 (Robust Positive Invariant Set) A set Z ⊆ X is said to be a ro-

bust invariant set for the autonomous system (5.13) subject to the constraints

in (5.14), if

x(0) ∈ Z ⇒ x(t) ∈ Z, ∀w(t) ∈ W, ∀t ∈ N
+ (5.20)

Definition 4 (Maximal Robust Positive Invariant Set) The set Z∞ ⊆ X is

the maximal robust invariant set for the autonomous system (5.13) subject

to the constraints in (5.14), if Z∞ is a robust invariant set and Z∞ contains

all positive invariant sets contained in X that contain the origin.
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Two important operations for the discussion to follow are the Pontrya-

gin difference and the Monkowski sum. The Pontryagin difference of two

polytopes P and Q is a polytope

P ⊖Q := {x ∈ R
n : x+ q ∈ P, ∀q ∈ Q}, (5.21)

and the Minkowski sum of P and Q is a polytope

P ⊕Q := {x+ q ∈ R
n : x ∈ P, q ∈ Q}. (5.22)

Robust Control Law

In this section we introduce the framework used to develop the Robust Active

Safety controller in §7.5. We follow a notation similar to [8]. The control

problem is divided into two components: (1) a feedforward control input

computed for the nominal system and (2) a linear state feedback controller

that acts on the error between the actual state and the predicted nominal

state. We denote the control sequence and the disturbance sequence as u =

{u0, u1, ..., uN−1} and w = {w0, w1, ..., wN−1} for system (5.17)-(5.18) for t =

0...N − 1. Let Φ(t; x,u,w) denote the solution of (5.17) at time t controlled

by u when x(0) = x. Furthermore, let Φ̄(t, x, ū) denote the solution of the

nominal system

x̄(t+ 1) = Ax̄(t) +Bū(t) (5.23)

at time t controlled by the nominal control sequence ū = {ū0, ū1, ..., ūN−1}

when x(0) = x. Denote the predicted nominal state trajectory by x̄ =

{x̄0, x̄1, ..., x̄N−1}. We write the controller as

v(t) = ū(t) +K(x(t)− x̄(t)) (5.24)

where ū(t) is the feedforward component for the nominal system andK(x(t)−

x̄(t)) is the linear state feedback component acting on the error between the

actual state and the predicted nominal state. We make use of the following

assumption,
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Assumption 14 (Stabilizing Disturbance Rejection Controller) The linear

state feedback gain K ∈ R
m×n in (5.24) is chosen such that AK = A+BK is

Hurwitz. Note this can always be satisfied if the pair (A,B) is controllable.

Using the above definitions we can formulate the following Proposition.

The details can be found in [79].

Proposition 1 Suppose that assumption 14 is satisfied and that Z is a ro-

bust positively invariant set (definition 3) for the perturbed system (5.17)-

(5.18) with control law (5.24). If x ∈ {x̄}⊕Z, then x(t+1) ∈ {x̄(t+1)}⊕Z

for all admissible disturbance sequences w(t) ∈ W.

This proposition states that if the control law (5.24) is used it will keep the

states x(t) = Φ(t; x,u,w) of the uncertain system (5.17) within the robust

positive invariant set Z centered on the predicted state trajectory Φ̄(t, x, ū)

of the nominal system (5.23) for all admissible disturbance sequences w.

x(0) ∈ {x̄0} ⊕ Z ⇒ x(t) ∈ {x̄t} ⊕ Z ∀w(t) ∈ W, ∀t ≥ 0, (5.25)

where x(0) and x̄0 are the initial states of (5.17) and (5.23). Proposition 1

suggests that if the optimal control problem for the nominal system (5.23)

is solved for the tightened constraints

X̄ = X ⊖ Z, Ū = U ⊖KZ, (5.26)

then the use of the control law (5.24) will ensure persistent contraint satis-

faction for the controlled uncertain system (5.17) [8].

Robust Invariant Set Computation

The robust analysis is done off-line and the notion of robust invariant sets is

important for the discussion to follow.

Stabilizing Controller K Recall control law (5.24). The choice of the

stabilizing state feedback gain matrix K will determine the size of the robust
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invariant set. See [8] for a thorough discussion on this topic. In this paper

we choose K as the optimal infinite horizon LQR solution K∞
LQR. Then,

v(t) = ū(t) +K∞

LQR(x(t)− x̄(t)) (5.27)

Defining this stabilizing controller allows us to compute the robust positive

invariant set Z needed to calculate the tightened constraints X̄ and Ū defined

in (5.26). Note that Z is dependent upon the choice of K.

Robust Positive Invariant Set Z The robust invariant set Z is used to

determine the tightened constraints for the nominal system. The following

algorithm provides a procedure for computing Z for system (3.24)-(5.27).

An initial set of states X0 ⊂ Z is chosen and the bounded disurbance W

is defined. Algorithm 1 will calculate the reachable set Z (definition 3) if

it converges in a finite number of steps. For the problem to be well-posed

we make the assumption that the tightened constraints X̄ and Ū exist and

contain the origin. For this assumption to hold it is required that W is

sufficiently small. Clearly there is a design trade-off between disturbance

rejection properties (large K) and the size of the tightened constraints.

Algorithm 1 Computation of Z
Require: fa, X0, W
Ensure: Z
1: Let Ω0 = X0

2: Let Ωk+1 = Reachfa(Ωk,W) ∪ Ωk
3: if Ωk+1 = Ωk then

4: Z ← Ωk+1

5: else

6: GOTO 2.
7: end if

Set-based MPC Problem Formulation

Once the robust positively invariant set has been calculated and the con-

tstraints have been sufficiently tightened, the optimization problem to be
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Figure 5.1: The initial set of states X p
0 and the final robust positive invariant

set Zp projected onto the ey-eψ plane where X p
0 = projey−eψ(X0) and Zp =

projey−eψ(Z).

solved at each time step is no more computationally demanding that a stan-

dard MPC problem for the nominal system. The formulation is,

PROB : min
Ū ,ε

JN(Ū(t),∆Ū(t)) (5.28a)

s.t. ξk+1,t = f dm(ξk,t, uk,t), k = t, ..., N − 1, (5.28b)

ξk,t ∈ X̄ , k = t+ 1, ...t+N − 1, (5.28c)

uk,t ∈ Ū , k = t, ..., t+N − 1, (5.28d)

ξt,t = ξ(t), (5.28e)

ξN,t ∈ X̄f , (5.28f)

where the model f dm(·, ·) : Rn×Rm → R
n in Equation (5.28b) is model (5.23)

with control law (5.27), i.e. the nominal system dynamics. The constraints

in Equations (5.28c)-(5.28f) are the tightened constraint sets,

X̄ = X ⊖ Z, Ū = U ⊖KZ. (5.29)
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Then, the corrective steering action calculated by problem PROB for the

nominal system (5.23) and tightened constraints (5.29) will ensure persistent

constraint satisfaction for the controlled uncertain system.

5.3.2 Stochastic Robust MPC

In this section we incorporate the stochastic driver model of §3.4 and provide

probabilistic robust guarantees of constraint satisfaction in the presence of

the driver’s uncertain behavior. In the literature accurate driver models

often predict a distribution over future driver inputs [86, 93, 45, 5]. By

explicitly considering this distribution, we convert the uncertainty in the

behavior of the driver to probabilistic constraint satisfaction in the model

predictive controller. The uncertainty in the driver model is handled at

the design stage by the computation of an upper bound on the disturbance

propagation. By tightening the constraints by this amount we can ensure

constraint satisfaction of the original system, within a given probability, for

the stochastic system.

Stochastic MPC Problem Formulation

A Model Predictive Controller is implemented to constrain ey within the

lane using minimal control effort. By formulating the problem this way, the

driver assumes full control of the vehicle until a lane departure is predicted,

at which point the controller adds the minimal corrective action to keep the

driver safe. Since we are only concerned with keeping the states of the vehicle

within the lane constraint and do not perform tracking, only the control input

is penalized in the cost function J . Because of the stochastic nature of the

driver disturbance, J is taken as the expected value, E{· }, of control inputs.

We discretize the dynamics of Equation (2.41) with a fixed sampling time Ts

to obtain,

ξ(k + 1) = Addmξ(k) +Bdv(k) + Ed
dmp(k) +Ddw(k), (5.30)
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where the (·)d denotes the discrete-time dynamics. The optimization problem

is formulated as follows,

PPROB : min
vt

J = E{
t+N−1
∑

k=t

||uk,t||
2
2} (5.31a)

s.t. ξk+1,t = Addmξk,t +Bdvk,t + Ed
dmpk,t +Ddwk,t (5.31b)

|vk,t| ≤ vmax (5.31c)

wk,t ∼ N (w̄k,t,Σ) (5.31d)

Pr{gT ξk+1,t ≤ h} ≥ p (5.31e)

ξt,t = ξ(t) (5.31f)

where t denotes the current time instant and ξk,t denotes the predicted state

at time t+k obtained by applying the control sequence vt = {vt,t, vt+1,t, ..., vt+N−1,t}

to the system (5.30) with ξt,t = ξ(t). N denotes the prediction horizon. Equa-

tion (5.31b) is the discretized dynamics in Equation (5.30). Equation (5.31c)

is the constraint on the controller, which corresponds to the physical limit of

the active front steering actuator. Equation (5.31d) assigns a normal distri-

bution to the driver disturbance (3.22). Equation (5.31e) is the probabilistic

constraints imposed on ey, and equation (5.31f) is the state feedback at the

start of the prediction horizon. Since the lateral position ey is dependent on

the driver’s steering action, which is stochastic, we can only find a solution to

the problem that satisfies the constraint with probability p. We can specify

the probabilistic constraint (5.31e) as,

gT =

[

1 0 0 0

−1 0 0 0

]

, h =

[

ey,max

ey,min

]

Closed-Loop Paradigm In order to handle the stochastic nature of (5.31),

the problem is reformulated and a new optimization variable, ck,t, represent-

ing the perturbation of the control input about a linear feedback law, is

added. Using the closed-loop paradigm in [71], (5.31b) can be decomposed
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into,

ξk,t = zk,t + ek,t (5.32a)

vk,t = Kξk,t + ck,t (5.32b)

zk+1,t = Φzk,t +Bdck,t (5.32c)

ek+1,t = Φek,t +Ddwk,t (5.32d)

where Φ = Addm +BdK is the closed-loop system matrix with state-feedback

controller K. We make the following assumption.

Assumption 15 Φ = Addm + BdK is Hurwitz. Note this assumption can

always be satisfied if (Addm, B
d) is controllable.

Remark 7 We choose the state-feedback stabilizing controller K to be the

optimal infinite horizon LQR gain matrix.

Remark 8 In the discussion here and to follow we set the road parameters

p(t) = 0, ∀t for visual clarity.

By this decomposition the states ξk,t, which are random variables, are now

decomposed into a deterministic component zk,t and a stochastic component

ek,t, where z and e are driven by c and w, respectively.

Probabilistic Constraints Given the probability distribution on the pre-

dicted driver inputs (3.22), we can formulate the requirements that the ve-

hicle stays within the lane and in a stable operating region as probabilistic

constraints (5.31e). We will convert the probabilistic constraints to linear

constraints by using information on the disturbances.

Lane Departure Constraints The constraints on lateral lane position

ey is expressed by (5.31e). We will omit the second subscript t in the later

discussion since t does not change in each optimization. We will also drop

the superscript (·)d for visual clarity. From (5.32), and with et = 0, we have,
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zt+i = Φizt +Hict (5.33a)

et+i = Φi−1Dwt + Φi−2Dwt+1 + ... +Dwt+i−1 (5.33b)

i = 1, 2, ..., N − 1

where Hi = [Φi−1B Φi−2B ... B 0 0 ... 0], and cTt = [cTt cTt+1 ... cTt+N−1].

From (5.32a) we have gT ξt+i = gTzt+i+g
Tet+i, thus the constraint Pr{gT ξt+i ≤

h} ≥ p is equal to,

Pr{gTHict + gTΦizt ≤ h− gTet+i} ≥ p (5.34)

which in turn equals to,

gTHict + gTΦizt ≤ h− γi (5.35a)

Pr{gT (Φi−1Dwt + Φi−2Dwt+1 + ...+Dwt+i−1) ≤ γi} = p (5.35b)

i = 1, 2, ..., N

Bounds on γi are implied by the following result [70].

γi ≤

√

p

1− p
× gTPig (5.36)

where P1 = DE(wtw
T
t )D

T and Pi+1 = ΦPiΦ
T +DE(wt+iw

T
t+i)D

T , i = 1, 2....

Result of (5.36) holds for arbitrary distributions and is a direct product of

Chebyshev’s one-sided inequality. Here, since we assumed the disturbance

has a Gaussian distribution, we can estimate the value of γi more accurately.

Note 5 The bound in (5.36) is overly-conservative. By assuming the dis-

turbance has a Gaussian distribution, the values of γi can be estimated more

accurately by discretizing the distributions of wt+i and then performing dis-

crete convolutions to get the estimated distribution of the sum gT (Φi−1Dwt+

Φi−2Dwt+1 + ...+Dwt+i−1). Since γi does not depend on the states ξ, it can

68



CHAPTER 5. MODEL PREDICTIVE . . . 5.3. ROBUST MODEL PREDICTIVE . . .

be calculated off-line (if the disturbance wi can be known off-line).

Once γi is calculated, the constraints (5.31e) are ready to be converted

to linear constraints:

gT





























B 0 0 ... 0 0

ΦB B 0 ... 0 0

Φ2B ΦB B ... 0 0

: : : ... : :

: : : ... : :

ΦN−2B ΦN−3B ΦN−4B ... B 0

ΦN−1B ΦN−2B ΦN−3B ... ΦB B





























c
T
t (5.37)

+gT





























Φ

Φ2

Φ3

:

:

ΦN−1

ΦN





























zk ≤





























h− γ1

h− γ2

h− γ3

:

:

h− γN−1

h− γN





























,

Formulating an Optimization Problem with the Batch Method To

solve the optimization problem posed in (5.31), the batch method [14] is used

to eliminate constraint (5.31b) before solving the problem. By recursively

substituting the state update, (5.32) can be re-written in terms of the state

feedback ξ(t), the optimization vector cTt = [cTt cTt+1 ... c
T
t+N−1], and the

disturbance vector wT
t = [wTt wTt+1 ... w

T
t+N−1] over the prediction horizon.

Taking equation (5.33),

zt+i,t = Φi−1Bdct,t + ... +Bdct+i−1,t + Φizt,t (5.38a)

et+i,t = Φi−1Ddwt,t + ...+Ddwt+i−1,t (5.38b)

the i-th predicted state, can be expressed as,

ξt+i = Φiξ(t) +HiBct +HiDwt (5.39)
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where Hi = [Φi−1 ... Φ0 0 ... 0]. By combining (5.39) and (5.32b), the control

input vector vT
t = [vTt vTt+1 ... v

T
t+N−1] can be expressed as,

vT
t = KHξξ(t) + (KHc + I)ct +KHwwt (5.40)

Hξ =















I

Φ
...

ΦN−1















Hc =



















0 · · · · · · · · · 0

B 0 · · · · · · 0

ΦB B 0 · · · 0
...

. . .
...

ΦN−2B ΦN−3B · · · B 0



















Hw =



















0 · · · · · · · · · 0

D 0 · · · · · · 0

ΦD D 0 · · · 0
...

. . .
...

ΦN−2D ΦN−3D · · · D 0



















Substituting (5.40) into cost function (5.31a) and removing terms which do

not involve ct, a new cost function J̃ is defined,

J̃ = E{cTt Pct + 2ξ(t)TQct + 2wT
t Rct} (5.41)

P = (KHc + I)T (KHc + I)

Q = (KHξ)
T (KHc + I)

R = (KHw)
T (KHc + I)

Now the optimization problem defined in (5.31) is completely specified as a

Quadratic Program, which can be easily handled by solvers such as CVX.
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Chapter 6

Hierarchical Model Predictive

Control

The capability of handling constraints in a systematic way makes MPC a very

attractive control technique, especially for applications where the process is

required to work in wide operating regions and close to the boundary of the

set of admissible states and inputs. Parallel advances in theory and comput-

ing systems have enlarged the range of applications where real-time MPC

can be applied [15, 17, 66, 39, 103]. Yet, for a wide class of fast applications,

the computational burden of Nonlinear MPC (NMPC), presented in §5.1, is

still a barrier. As an example, in [16] an NMPC has been implemented on

a passenger vehicle for path following via an Active Front Steering (AFS)

system at 20 Hz, by using the state of the art optimization solvers and rapid

prototyping systems. It is shown that the real-time execution is limited to

low vehicle speeds on icy roads, because of its computational complexity. In

order to decrease the computational complexity, in [34, 32] a Linear Time

Varying MPC approach is presented to tackle the same problem. Experi-

mental results [32, 37, 31, 35] demonstrated the capability of the controller

to stabilize the vehicle at higher speeds, up to 72kph, in a double lane change

maneuver on a slippery (snow covered) surface.

In all the aforementioned literature, obstacle avoidance is not explicitly

considered in the control design. The work presented in this thesis continues
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to investigate the application of MPC techniques in the situation where a

given trajectory fails to avoid one or more pop-up obstacles. The given tra-

jectory represents the initial driver intent and the MPC has to safely avoid

the obstacle while trying to track the desired trajectory. Previous work by

the authors [46] have accounted for pop-up obstacles by decomposing the

problem into the two-level NMPC problem depicted in Figure 6.1. The high-

level “Path Planner” uses a simplified point-mass vehicle model to generate

an obstacle avoiding trajectory by using a NMPC controller (§5.1). The tra-

jectory is fed to the low-level “Path Follower” designed by using a NMPC

based on a higher fidelity vehicle model (§2.1) [33]. In [46] the proposed hier-

archical framework has been implemented on an autonomous ground vehicle

driving at high speeds on an icy road.

Low-Level Path Follower

High-Level

Path Planner

(obstacle 

avoiding)

Online

NMPC Braking

Logic

Vehicle

Obstacle Information

refξ

ξ

ξ ξ

ξplanξ

fδ

brF

blF

flT

frT

rrT

rlT

Figure 6.1: Architecture of the two-level MPC. The motion primitive or

spatial model is used for high-level path planning. The four-wheel vehicle

model (§2.1) is used for low-level path tracking.

Although the decomposition in Figure 6.1 allows for real-time implemen-

tation, the trajectories generated by the path planner are not always feasible

when using a low-fidelity vehicle model, such as the point mass, in [46]. The

lower level tracking performance deteriorates and obstacle collisions can be

observed in conditions where the obstacle could have been avoided.

Two different solutions to this problem will be presented. In Section

6.1, in order to overcome this issue and still maintain real-time feasibil-
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ity, we study the use of a motion primitive path planner. Path planners

based on motion primitives for dynamical systems have been first introduced

in [42]. There, the author considered two types of primitives: trims and

maneuvers. Trims are steady-state equilibrium trajectories and maneuvers

are pre-specified trajectories connecting trims, designed offline, and stored

in a library. The method shifts the complexity of nonlinear dynamical op-

timization to the sequencing of “useful” trims and maneuvers in order to

generate a feasible path. If the number of motion primitives is small, we

expect the combinatorial nature of the resulting problem to be easily han-

dled by state-of-the-art mixed-integer solvers. Moreover, if the environment

is highly structured (as in urban driving), one can expect to generate feasible

trajectories for a variety of scenarios with only a few motion primitives.

The motion primitive approach has been used to successfully plan time-

optimal paths for small robotic helicopters [42, 43] and other simple me-

chanical systems [84]. However, to the best of the authors’ knowledge, this

method has not yet been implemented on autonomous ground vehicles. The

section is structured in two parts. In the first part we describe in detail the

proposed hierarchical control architecture and the approach to generate a

trajectory by using motion primitives. We will provide details on specific

lane-change and drifting motion primitives which are very useful for design-

ing a semi-autonomous vehicle with adjustable degree of autonomy. In the

second part, simulative and experimental results with an autonomous and

semi-autonomous ground vehicle traveling at high speed on an icy surface

are presented [54].

Although the high level trajectories from the motion primitive planner are

feasible for the high-fidelity model, the optimal trajectory requires the online

solution of a mixed-integer program or the offline computation of a large look-

up table. This prevents the use of such an approach on current electronic

control units if the motion library is large. In section 6.2, in order to plan

a feasible path in real-time, we study the use of spatial predictive control at

the high level. We follow the approach presented in [99, 63] and transform

time-dependent vehicle dynamics into spatial-dependent dynamics. By using

this approach obstacle constraints are translated into spatial constraints on

73



CHAPTER 6. HIERARCHICAL MODEL . . .

the state vector. Simulation and experimental results show the controller’s

ability to avoid multiple obstacles while tracking a reference in the center

of the lane. Real-time tests have been conducted on a dSPACE platform in

hardware-in-the-loop simulations. Furthermore, the hierarchical controller

has been implemented on a semi-autonomous vehicle driving high-speed on

ice [47].
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6.1 Motion Primitive Path Planner

In this section we introduce the motion primitive framework. We use the

ideas presented in [42] and adapt the formalism to fit our application. Con-

sider the Nonlinear Four Wheel Vehicle Model presented in §2.1. In this

section a sliding model controller is used to control the braking torques Ti at

each wheel. Model (2.2)-(2.3) in closed-loop with the slip ratio controller is

compactly written as

ξ̇(t) = f 4w
σ (ξ(t), u(t)), (6.1)

where the input u(t) = [δf , σr] and δf is the front steering angle and σr is the

desired rear slip ratio. The state ξ = [ẋ, ẏ, ψ̇, X, Y, ψ] ∈ R
6 is grouped into

two vectors ξ = [ξg, ξb] where the vector ξb = [ẋ, ẏ, ψ̇] collects longitudinal

and lateral velocities and yaw rate in the body-fixed frame Ob and ξg =

[X, Y, ψ] collects longitudinal and lateral coordinates and yaw angle in the

inertial frame OI . The tire forces in Equation (6.1) are calculated using the

Pacejka tire model of §2.2.1.

6.1.1 High-Level Motion Primitive Framework

Two types of motion primitives are defined: trims and maneuvers. A trim

is a trajectory for system (6.1) with constant body-fixed frame states ξ̄qb =

[¯̇x, ¯̇y,
¯̇
ψ] and constant inputs ūq = [δ̄f , σ̄r], i.e., (ξ̄

q
b , ū

q) is an equilibrium of the

dynamical system (6.1). By changing initial conditions of the vehicle states

in the global frame ξg(t0), a set of trim trajectories is generated. We denote

this set of trim trajectories as Ξq where q is used to highlight the dependence

of the trim trajectories to the single equilibrium point (ξ̄qb , ū
q). In summary,

a trim ξq(t) (or simply “a trim q”) is the solution to:

ξ̇q(t) = f 4w
σ ([ξg(t)

′, ξb(t)
′]′, ūq), ∀t ≥ t0 (6.2a)

ξb(t) = ξ̄qb , ∀t ≥ t0 (6.2b)

ξg(t0) = ξg,0 (6.2c)
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where the initial condition belongs to a compact set ξg,0 ∈ X × Y × Ψ. A

trim trajectory q ∈ Ξq requires the specification of the initial conditions

ξg(t0) = [X0, Y0, ψ0] and does not have any constraint on its duration. The

set of all trims is
⋃

q∈Q Ξq. Table 6.1 shows a subset of the trims used later

in the examples in Section 6.1.5.

The time spent in trim q will be denoted as τq and will be called the

coasting time. Since the body-fixed velocity and inputs are constant in a

trim motion, the Nonlinear Four Wheel Model (6.2) is easily simplified to

predict the state of the vehicle at time t0 + τq when a trim q is initiated at

time t0:

ξg(t
+) = ξg(t0) +R(ψ) ξ̄qbτq (6.3a)

ξb(t
+) = ξ̄qb (6.3b)

q(t+) = q(t0) (6.3c)

t+ = t0 + τq (6.3d)

where R(ψ) is the rotation matrix for coordinate transformation:

R(ψ) =







cos(ψ) −sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 1






(6.4)

The table of trims used in the example considered here are presented in

Table 6.1.

Table 6.1: Table of Trims

trim description ξb = [ẋ(m/s), ẏ(m/s), ψ̇(r/s)] [δf (rad), σr]

q1 straight [11, 0, 0] [0, 0.0015]

q2 left turn [11, 0.02, 0.27] [0.09, 0.0015]

q3 right turn [11,−0.02,−0.27] [−0.09, 0.0015]

q4 drift left [8,−1.09, 0.50] [0, 0.1]
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A maneuver is a finite time trajectory which is used to transition between

two trims. A maneuver p is defined by its starting and ending trim, qfrom

and qto, respectively, a fixed duration τp, a fixed displacement in the global

coordinates ∆ξpg = [∆X,∆Y,∆ψ] and the corresponding input profile ũp :

[t0, t0 + τp]→ U where U is the set of feasible inputs.

A maneuver is executed by applying to the vehicle the input ũp(t) for t

in the interval t0 ≤ t ≤ t0 + τp. If the vehicle is in trim qfrom at time t0, then

by executing the maneuver p, the end state at time t0 + τp is

ξg(t
+) = ξg(t0) + ∆ξpg (6.5a)

ξb(t
+) = ξ̄qtob (6.5b)

q(t+) = qto (6.5c)

t+ = t0 + τp (6.5d)

Transitions between trims are only permitted through the execution of a

maneuver. We will use the set P to collect the index p of all stored maneuvers.

Table 6.2 shows the maneuvers designed to transition between the trims in

Table 6.1. A maneuver p ∈ P is defined by defining control sequence ũp and

is a solution to,

ξ̇p(t) = f 4w
σ ([ξg(t)

′, ξb(t)
′]′, ũp), ∀t ∈ [t0 τp] (6.6a)

ξb(t0) = ξ̄qfromb (6.6b)

ξg(t0) = ξg,0 (6.6c)
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Table 6.2: Table of Maneuvers

maneuver description qfrom qto ∆ξg = [∆X(m),∆Y (m),∆ψ(rad)] τp(sec.)

p1 straight to left turn 1 2 [16.58, 1.61, 0.28] 1.5

p2 left turn to straight 2 1 [5.53, 0.08, 0.02] 0.5

p3 straight to right turn 1 3 [16.58,−1.61,−0.28] 1.5

p4 right turn to straight 3 1 [5.53,−0.08,−0.02] 0.5

p5 straight to drift 1 4 [17.19, 3.59, 0.77] 2.0

p6 drift to straight 4 1 [17.19, 3.59, 0.77] 2.0

p7 right lane-change 1 1 1 [39.67,−6.16, 0] 3.7

p8 right lane-change 2 1 1 [55.14,−6.09, 0] 5.2

p9 left lane-change 1 1 [87.93, 6.00, 0] 8.1

p10 parameterized lane-change 1 1 (a, L) ↔ ∆ξg τ(a,L)

The resulting system can be reformulated as a hybrid system with the

steady-state trims as the discrete states and a maneuver used as a control

input to transition between two discrete states. Figure 6.2 shows the hybrid

system obtained by using the trims and maneuvers described in Tables 6.1

and 6.2. With this model at hand, the motion planning problem is then

formulated as a hybrid optimal control problem. In particular, finding an

optimal path is reduced to finding a sequence of coasting times in trims and

corresponding maneuvers that optimize a given cost function. More details

can be found in [44] and [43].

6.1.2 Motion Primitives for Collision Avoidance

The trims and maneuvers described in Tables 6.1 and 6.2 have been derived

by using their definitions and forward simulations of the vehicle model (6.1).

The intent was to generate motion primitives useful for collision avoidance

of a ground vehicle. Clearly the library of trims and maneuvers can be easily

expanded.

The objective of this section is to provide details on two specific maneu-

vers in Table 6.2. First, we discuss maneuver p10 which is a parameterized

lane change obtained by using clothoids. Later in this thesis we will show

that this type of maneuver is very useful for obtaining a semi-autonomous
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Figure 6.2: An example hybrid system with steady-state trims as discrete
states and maneuvers execute transitions.

vehicle with an adjustable degree of autonomy. Second, we discuss the drift-

straight-drift maneuvers p5 and p6. Drifting maneuvers are used to improve

the vehicle agility. Moreover, at high speed on slippery surfaces it may be

the only feasible maneuver to avoid an obstacle.

Parameterized Clothoids

Because of the structured environment of on-road driving, a common motion

primitive to avoid an oncoming collision is a lane-change [55]. A lane change

motion primitive is the sequence of a straight trim, a lane-change maneuver,

and a straight trim. Maneuvers p7, p8, p9 in Table 6.1 are classical lane

change maneuvers.

Maneuver p10 is a parameterized lane change obtained by sequencing four

clothoids. A clothoid is a curve with a curvature that changes linearly with

respect to the curve length, see Figure 6.3. It is widely used in railway and

79



CHAPTER 6. HIERARCHICAL MODEL . . . 6.1. MOTION PRIMITIVE PATH PLANNER

high way engineering for curvature transition. Also, its use in road design and

robot path planning has a long history, relevant references include [95, 92, 75].

In a clothoid, at a given curve length s, the curvature K(s) is determined by

the linear function K(s) = 2a2 · s, where a is the curvature change rate. The

clothoid is expressed by the Fresnel integral [95] as:

X =
1

a

∫ aL

0

cos(s2)ds

Y =
1

a

∫ aL

0

sin(s2)ds

(6.7)

where X and Y are the global coordinates and L is the maximum curve

length. In numerical computation schemes, the integrals in Equation (6.7)

are approximated by their Taylor expansion:

∫ aL

0

cos(s2)ds = aL−
(aL)5

5× 2!
+

(aL)9

9× 4!
−

(aL)13

13× 6!
...

∫ aL

0

sin(s2)ds =
(aL)3

3
−

(aL)7

7× 3!
+

(aL)11

11× 5!
−

(aL)15

15× 7!
...

(6.8)

By varying the parameters a and L, different clothoids are generated. A

lane-change maneuver is built by connecting 4 pieces of clothoids together,

as shown in Figure 6.3.
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Figure 6.3: Lane change paths with different aggressiveness. Each is gen-

erated by connecting four pieces of clothoids. The upper figure shows the

shapes of the paths in global frame. The lower figure shows the piecewise

affine relation between curvature and curve length for each path.

In our approach, in order to avoid storing lane change maneuvers for

different a and L, we do not pre-compute the maneuver p10. Instead, we find

conditions on a and L guaranteeing that the maneuver is feasible and let the

path planner find the optimal and feasible a and L. The maximum curvature

of the clothoid defined by Equation (6.7) is 2a2L. Thus, the maximum lateral

force needed to track the clothoid is mẋ2 ·2a2L. Thus, by constraining a and

L we can guarantee that the required lateral force is feasible and therefore

that the clothoid can be followed without tracking error.

For a point-mass model, the upper bound on lateral force is µmg. Thus,

the constraint on curvature for a point-mass model is 2a2L ≤ µg

ẋ2
. For the
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four-wheel model described in Equation 6.1, the maximum achievable lateral

force depends on the current vehicle states. At the beginning of a turn where

lateral velocity ẏ and yaw rate ψ̇ are both zero, the lateral force at the rear

tires are zero, therefore the only source of lateral force at that instant are the

front tires. We use sampling and extensive simulations of our vehicle model

to determine the maximum available lateral force at the beginning of a turn

(0.46µmg). After the turn begins, ẏ and ψ̇ increase and more lateral force

will become available. For a conservative approximation, the value 0.46µmg

is taken as the upper bound of lateral force along the turn. The constraint

on a and L for the clothoid becomes,

2a2L ≤
0.46µg

ẋ2
(6.9)

where µ is the friction coefficient and ẋ is the body-fixed longitudinal velocity.

Specifying a and L determines ∆ξp10g and the time to track the clothoid τa,L

depends on the low-level MPC.

Drift Trim and Maneuver

Maneuvers p5 and p6 are designed to bring the vehicle into a steady-state

drift. During a drifting trim the tires are operating outside their linear region,

see, e.g., Figure 2.7, and the constant side slip angle of the vehicle is high.

This is commonly achieved by saturating the rear tire forces.

Bringing the system to a steady-state drift is a maneuver often difficult

to achieve since the drifting trim is an unstable equilibrium point of the

system (6.1). We compute the equilibrium points as in [56] by solving a set

of nonlinear equations, ξ̇ = f 4w
σ (ξe, ue) = 0 for constant ξe and ue. Once a

drift trim has been computed, we compute the drifting maneuvers off-line by

solving a sequence of nonlinear optimization problems to find a trajectory in

the body-frame that constrains the desired steady-state point as a boundary

condition. The cost in the nonlinear optimization problem is

J(ξb, u) = min
U

N
∑

k=1

‖ξb,k − ξb,e,k‖
2
Q + ‖uk − ue,k‖

2
R (6.10)
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where ξb = [ẋ, ẏ, ψ̇] is the body-fixed state, ξb,k is calculated from the dis-

cretized model in (6.1) with a fixed sampling time Ts, and Q and R are

appropriate weighting matrices. The solution to this problem yields an in-

put vector U = {δf , σr}k, k = 1...N where δf is the front steering angle,

σr is the desired slip ratio of the rear tires and N is the planning horizon.

Computing offline drifting maneuvers allows for the path planner to quickly

plan a feasible path which can be difficult to find in real-time with online

nonlinear optimization.

In Figure 6.4 the vehicle approaches an obstacle at ẋ = 11 m/s on an icy

surface with µ = 0.55. In these conditions, the drifting maneuver may be

the only safe maneuver to navigate the corner.
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Figure 6.4: A drifting maneuver compared to an aggressive turn. The turn

is the sharpest allowable maneuver within the constraint of the slip angles

of the tires. At this initial vehicle state (ξg = [0, 0, 0], ẋ = 11m/s, q1) the

drifting maneuver is the only safe maneuver to avoid the obstacle, where the

coefficient of friction µ = 0.55.
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6.1.3 Planning With Motion Primitives

Casting the trajectory planning problem in the motion primitive framework

allows us to compute an optimal feasible path by solving a hybrid optimal

control problem. It is our desire to track a reference trajectory while avoiding

collisions with any obstacles. We use a cost function that is a weighted sum

of the tracking error, distance to any obstacles, and the aggressiveness of the

maneuver measured as a norm of the maximum tire slip angle.

Let the cost of a trim q be defined as:

Cq = Kr

∫ Tq

t0

(η(t)− ηref(t))
2dt+Ko

ẊTq

d(Tq) + ε
(6.11)

where η =
[

ẋ, ψ, ψ̇, Y
]

and ηref is the reference trajectory. Kr and Ko are

weighting scalars. Tq = t0 + τq where trim q is initiated at time t0 and τq is

the time spent in trim q. ẊTq is the vehicle speed in the inertial X-direction

at time Tq, d(Tq) is the distance to the obstacle at time Tq (see [46] for the

explicit calculation of this term), and ε ≥ 0 is a small constant. The cost of

initiating a maneuver p is defined as:

Cp = Km
r

∫ Tp

t0

(η(t)− ηref(t))
2dt+Km

p ‖αmax‖ (6.12)

where Km
r and Km

p are weighting scalars. Tp = t0 + τp where t0 is the start

time of the maneuver p and τp is the duration of maneuver p. αmax is the

maximum slip angle of the front tires during the maneuver. Higher weights

Km
p on αmax favor paths that are less aggressive.

The problem of finding a sequence of maneuvers and trims minimizing the

cost Cp + Cq in (6.11) and (6.12) can be formulated as a dynamic program:

J(ξg, q) = min
τq,p,(a,L)

[

Cq + Cp + J(ξ+g , q
+)
]

(6.13)

where ξ+g and q+ are the next vehicle states and trim obtained by taking

maneuver p, as defined in Equations (6.3) and (6.5), respectively. In (6.13)

ξg = [X, Y, ψ], (ξg(0), q(0)) = (ξg,0, q0) and J(ξg,f , qf ) = 0. τq is the time spent
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in trim q and p is the maneuver executed. For the parameterized clothoid

the minimization is also taken over parameters a and L. Equation (6.13)

is a form of the Bellman equation. We solve (6.13) offline by discretizing

the value function over a grid in the (X, Y, ψ, q) space and performing value

iteration until the algorithm converges. The solution is an optimal value

function from all hybrid states (ξg, q) to end state and trim (ξg,f , qf).

Operational Envelope

As stated in the previous section, the cost function of the optimization prob-

lem in equation (6.13) captures the aggressiveness of the curve as defined by

maximum slip angle during a maneuver. This slip angle quantifies how close

the vehicle is to the dynamic envelope defined by the linear region of Figure

2.7. This region is considered the safe driving region. The solution to the

planning problem is a path L = {τq, p}k, where k = 1, 2...N and N is the

length of the planning horizon. The sequence of τq and p define the optimal

time in trim and the optimal switching sequence. Then, the maximum slip

angle of a given path is defined as

αmax = max
α
{L}, (6.14)

The maneuvers are designed to be within the linear region of the tire model,

in Figure 2.7 where |αmax| < |αlinear|.

6.1.4 Low-Level MPC Path Follower

The trajectory computed by the high-level motion-primitive path planner is

sent to the low level path follower. A Model Predictive Controller (MPC) is

used to accurately track the path and thus mitigate the effect of model mis-

match and exogenous disturbances. The optimization problem to be solved

at each time instant is formulated in Problem PNL of Equations (5.3). The

general cost function defined in Equation (3.7) is specified as,
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JN (Ξt, Ut,∆Ut) =
t+N−1
∑

k=t

‖ηk,t − ηplank,t‖
2
Q + ‖uk,t‖

2
R + ‖∆uk,t‖

2
S

(6.15)

where the tracking reference is the output of the motion primitive planner

and is the planned path:

ηplank,t = [ẋplank,t , ψplank,t , ψ̇plank,t , Yplank,t]
′ (6.16)

At each time step t, the performance index JN(Ξt, Ut,∆Ut) is optimized

under the constraints specified in Equation (5.3) starting from the state ξt,t =

ξ(t) to obtain an optimal control sequence, U∗
t = [u∗t,t

′, ..., u∗t+N−1,t
′]′ and

optimal state sequence Ξ∗
t = [ξ∗t,t

′, ..., ξ∗t+N−1,t
′]′ .

Note 6 A difference from problem PNL in Equation (5.3) and the problem

presented here is the addition of the optimization variables ∆Ut which has

been added to constrain the change rate of the control inputs Ut. The con-

straints of Equation (5.3) should be modified to include,

uk,t ∈ ∆U , k = t, ..., t+N − 1, (6.17)

6.1.5 Simulation And Experimental Results

Extensive simulations and experiments have been performed to test the pro-

posed hierarchical control architecture composed of a high-level motion prim-

itive planner and a low-level MPC path follower. This section has two objec-

tives: first we will show in simulation the capability of the proposed scheme

in generating aggressive feasible motion plans which include drifting in order

to avoid lane departures. Then, we will show the benefit of using parameter-

ized clothoids in semi-autonomus drive by using simulations and experiments

conducted on a vehicle while driving high-speed on ice.
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Agile Driving - Simulations

The simulations presented in this section show the utility of the motion prim-

itive planner and its capability of generating aggressive feasible trajectories.

The simulated scenario shows the vehicle approaching a right-angle at a ve-

locity of ẋ = 11 m/s in trim q1 on an icy surface with µ = 0.55. Figure 6.5

shows the results of the motion primitive planner and the low-level tracking.

In the simulation the target set is Xf ∈ [32 37] and Yf ∈ [38 42]. Using the

nonlinear solver NPSOL [49] a feasible solution could not be found. Without

considering the drifting primitives the lane departure is unavoidable with

steady-state turning.
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Figure 6.5: A successfull navigation of the corner planned with the drift-

ing primitives. The vehicle starts in trim q1 (straight travel, ẋ = 11m/s),

takes maneuver p5 to a drifting trim q4, then takes maneuver p6 back to q1.

The aggressive path is able to be tracked with no tracking error where the

coefficient of friction µ = 0.55.

87



CHAPTER 6. HIERARCHICAL MODEL . . . 6.1. MOTION PRIMITIVE PATH PLANNER

Semi-Autonomous Drive - Simulations

The simulations presented in this section are based on single and double lane-

change maneuvers to avoid an upcoming obstacle. The vehicle is initially

tracking a reference trajectory down the center of the lane. The high-level

path planner is generating trajectories at each time step based on the current

vehicle position. The autonomous system does not take over from the driver

until the aggressiveness of the planned path, defined by its maximum slip

angle αmax, is greater than a specified threshold.

We use Matlab to simulate the closed-loop system. The MPC optimiza-

tion problem has been implemented as a C-coded s-Function. The commer-

cial NPSOL software package [49] is used for solving the nonlinear program-

ming problem in Equation (5.3). The first element of the optimized control

sequence is passed to an external block which uses the Four Wheel Model

(§2.1) and Pacejka tire model (§2.2.1) to simulate the dynamics of the vehicle,

and feeds the current state of the vehicle back to the controller.
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Figure 6.6: Various lane change maneuvers are compared. As the vehicle

approaches the obstacle the planned paths become more aggressive (high

slip angles).
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Figure 6.6 shows three different lane change maneuvers. They are gen-

erated from the high-level path planner starting in a steady-state trim q1

and X0 = 120, 140, and 160m. As the vehicle approachs the obstacle, the

planned paths become more aggressive, that is, the maximum slip angle of

the front tires approaches the stability limit for the vehicle. The maneuver

with αmax = 3.7◦ is the most aggressive maneuver the vehicle can handle at

the given speed. The simulations presented in Figure 6.7 use a binary driver

model. The driver is either attentive, as in the upper plot of Figure 6.7,

and the low-level controller does not assume control until the planned path

becomes aggressive, or the driver is distracted, as in the lower plot of Figure

6.7, and the low-level control begins tracking the planned path with a lower

degree of curvature. Because the planned path is generated using the higher

fidelity Four Wheel Model (§2.1), both simulations show accurate tracking

by the low-level MPC controller.
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Figure 6.7: In the upper plot an attentive driver is assumed. The low-level

control takes over when the planned path becomes aggressive. In the lower

plot the low-level control takes over for a distracted driver and the result is

a smoother and safer path.
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Figure 6.8: Various candidate paths considered during the online optimiza-

tion of the parameterized maneuver.

Figure 6.8 shows some of the candidate paths considered during the online

optimization of the parameterized clothoid maneuver, where the full set are

all possible combinations of the paths in the upper and lower plots of Figure

6.8. The candidate path chosen is the one that minimizes the cost function

in Equation (6.13) and satisfies the constraint in (6.9). Section 6.1.5 below

details an experiment conducted on ice for the online optimization of this

maneuver.

Semi-Autonomous Drive - Experiments

The control framework presented has been tested through simulation and

the online optimization of paramterized maneuvers has been tested through

experiments conducted on an icy surface. The experiments have been per-

formed at a test center equipped with icy and snowy handling tracks. The
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MPC controllers have been tested on a passenger car with a mass of 2050 Kg

and an intertia of 3344 Kg/m2. The controllers were run in a dSPACE Au-

tobox system equipped with a DS1005 processor board and a DS2210 I/O

board. We used an Oxford Technical Solution (OTS) RT3002 sensing sys-

tem to measure the position and the orientation of the vehicle in the inertial

frame and the vehicle velocities in the vehicle body-frame. The OTS RT3002

is housed in a small package that contains differential GPS receiver, inertial

measurement unit (IMU), and a DSP. It is equipped with a single antenna

to receive GPS information. The IMU inclused three accelerometers and

three angular rate sensors. The DSP receives both the measurements from

the IMP and GPS, utilizes a Kalman filter for sensor fusion, and calculates

the position, orientation, and other states of the vehicle such as lateral and

longitudinal velocities.

The car is equipped with an Active Front Steering (AFS) and Differential

Braking system which utilizes an electric drive motor to change the relation

bewteen the hand steering wheel and the road wheel angles. This is done

independently from the hand wheel position, thus the front road wheel angle

is obstained by summing the driver hand wheel position and the actuator

angular movement. Both the hand wheel position and the angular relation

between hand and road wheels are measured. The sensor, the dSPACE

Autobox, and the actuators communicate through a CAN bus. The test is

initiated by the driver with a button. When the button is pressed, the inertial

frame is initialized as follows: the origin is the current vehicle position, the

axes X and Y are directed as the current longitudinal and lateral vehicle

axes, respectively. The inertial frame becomes the desired path coordinate

system. Once the initialization procedure is concluded, the vehicle executes

the experiment. Note that noise may affect the yaw angle measurement

due to the single sensor setup. Compared to a dual antenna setup, a single

antenna system has to elarn the vehicle orientation and/or coordinate during

vehicle motion. When the vehicle stands still the yaw angle is computed by

integrating the yaw rate measurement from the IMU. This might cause the

presenece of a small offset in the orientation measurement while traveling at

low speed or standing still.
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The proposed control framework was tested with the high-level motion

primitive path planner using parameterized clothoids to construct the path.

The test was run on an icy and slippery test track. In the first test shown

in Figure 6.9 the driver was assumed to be distracted and the path tracker

assumed control early enough to track a smoothly planned trajectory. In the

second experiment in Figure 6.10 the driver was assumed to be attentive and

the controller did not take over until the planned path became aggressive.

Both experiments successfully avoided the obstacle.
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Figure 6.9: Vehicle successfully avoids the obstacle using maneuvers based

on clothoids

Note that the low-level path follower might not be able to track the

planned path perfectly because of model mismatch and external disturbances.

In some cases, the tracking error is large enough that the maneuver becomes
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infeasible to track. The second experiment in Figure 6.10 shows this interest-

ing behavior. In the test, when infeasibility appeared, a braking maneuver

was invoked to reduce the velocity and thus enlarge the feasible region. In

Fig 6.10 we can see that after a few seconds of braking the path planner is

able to find a feasible solution around the obstacle, braking is interrupted

and the obstacle is successfully avoided.
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Figure 6.10: Actual path of the vehicle deviates from the planned path due

to model mismatch and caused infeasibility of tracking. Braking was invoked

to enlarge the feasible region in that situation.
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6.2 Spatial Model Path Planner

In this section we introduce a novel spatial MPC framework. Consider the

Nonlinear Spatial Vehicle Model presented in §2.4. This model is similar to

the Bicycle Model of §2.3 but has undergone a coordinate transformation to

make space, more specifically the arc length, s, along an arbitrary curve, the

independent variable, and time, t, has become a dependent variable. The

utility in this transformation becomes apparent when formulating the state

constraints X for the optimization problem PNL in §5.1. If the optimization

routine retains the freedom to vary the vehicle’s velocity, by considering

braking and throttling, then the time-dependent vehicle models will not have

pre-specified positions at the sampling points along the receding horizon.

Consider the scenario in Figure 6.11 where a vehicle approaches a static

object. For a time-based vehicle model the position of each sampled point

is not known and the problem must be transformed into a complex mixed-

integer optimization program. However, after a spatial transformation the

sampled points are explicitly known in space and the constraints on the

vehicle’s position in the lane, ey, becomes convex, as in Figure 6.12.

ye

s

1t ...2t

N...t

1X 2X 3X

Figure 6.11: For the NMPC problem with steering and braking the obstacle

avoidance problem may be posed as a complex mixed-integer program, shown

here with 3 discrete constraint sets Xi, i ∈ {1, 2, 3}, where the sampled points

in time, ti, i ∈ {1...N}, are not fixed in the spatial-direction s.
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Figure 6.12: The spatial transformation reduces the complexity of the NMPC

problem with steering and braking by a translation of the obstacle constraints

to convex constraints on the state vector. The constraint set Σ1 is then

defined as interval constraints X1 := {ey | ey,min ≤ ey ≤ ey,max} and the

sampled points, si, i ∈ {1...N}, are fixed in the spatial-direction s.

Remark 9 In this section only static objects are considered and the dynam-

ics of moving objects are ignored. The obstacles considered here are roadside

obstructions and varying lane boundaries.

As in the previous section, the obstacle avoiding control problem con-

sidered here is decomposed into two parts: a high-level path planner and a

low-level path follower. The high-level plans an obstacle-free path using the

Nonlinear Spatial Vehicle Model, introduced in §2.4. The planned path (in

spatial coordinates) is then fed to the low-level MPC path follower, which

uses the Nonlinear Four Wheel Model, in §2.1, to compute the optimal con-

trol inputs in order to track the planned path. Each level solves a Nonlinear

MPC problem to plan or follow the path, as formulated in Chapter 5. This

chapter is organized as follows: first, the high-level spatial model planner is

detailed is §6.2.1, followed by the presentation of the low-level path tracker

in §6.2.2. Simulation results using real-time control on dSpace embedded

hardware is shown and the proposed framework is implemented on a test

vehicle and the experimental results are presented in §6.2.3
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6.2.1 High-Level Spatial Model Framework

The high-level MPC uses the spatial bicycle vehicle model from §2.4. We

discretize the dynamics in (2.39) with a fixed sampling distance, ds, for the

vehicle dynamics constraint in problem PNL Equation (5.3b), which we write

as,

ξ(s+ 1) = f s(ξ(s), u(s)), (6.18)

We define the general cost function of Equation (5.4) to consider the

deviation of the tracking states ηhlk,s = [ẋk,s , ψ̇k,s, eψk,s, eyk,s ]
T with respect to

the reference ηhlrefk,s = [ẋk,s , ψ̇k,s, eψk,s , eyk,s ]
T , as well as the input and input

rate. That is,

JN(Ξs, Us,∆Us) =

s+N−1
∑

k=s

‖ηhlk,s − η
hl
refk,s
‖2Qhl + ‖uk,s‖

2
Rhl

+ ‖∆uk,s‖
2
Shl
, (6.19)

where the reference ẋrefk,s is a given constant, eψrefk,s and eyrefk,s are zero,

ψ̇refk,s is defined as ψ′
s · ẋrefk,s. Qhl, Rhl and Shl are weighting matrices with

proper dimensions. Further, the constraints of Equations (5.3c)-(5.3d),

ξk,t ∈ X , uk,t ∈ U , k = t + 1, ...t+N − 1, (6.20)

are easily written as interval constraints,

X := {ey | ey,min ≤ ey ≤ ey,max}, U := {u | umin ≤ u ≤ umax}, (6.21)

Note 7 The index for general time t is replaced by s here. The distance

interval between step s+ 1 and s is the sampling interval ds.

A spatial horizon allows one to formulate obstacle constraints as simple

bounds on ey and include them in the state constraints (5.3c). At each

prediction step, the vehicle position along the lane center is known to be

(s + k) ds. According to the position and width of the obstacle, one can

determine the bounds on ey. With one obstacle, there are two disconnected
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regions of feasible ey, respectively corresponding to passing the obstacle from

left and right. In this thesis, a simple heuristic based on the vehicle position

and the size of each feasible region is used to determine on which side the

vehicle should pass. In the case of multiple obstacles at the same coordinate

s, a similar approach can still be used.

The optimal trajectory [ẋ∗(s), ψ̇∗(s), e∗ψ(s), e
∗
y(s), t

∗(s)] is computed by

simulating the vehicle model with the optimal inputs from the MPC problem

and then passed to the low-level path follower. Note t∗(s) can be easily

retrieved as described in §2.4 Equation (2.40). In the low-level, this spatial

trajectory is transformed back to a time-dependent trajectory [ẋ∗(t), ψ̇∗(t),

ψ∗(t), Y ∗(t), X∗(t)] by coordinate transformation and interpolation.

6.2.2 Low-Level MPC Path Follower

The low-level MPC uses the Nonlinear Four Wheel Vehicle Model from sec-

tion 2.1. At each time step t, the system dynamics are linearized around

the equilibrium trajectory [ξk,t, uk,t], with uk,t = ut,t ∀k = t, ..., t + Hp,ll

and ξk+1,t = f 4w
d (ξk,t, uk,t), where f

4w
d is the discrete version of the equation

ξ̇(t) = f 4w(ξ(t), u(t)). The details of the linearizing process can be found in

[30].

The cost function again consists of the deviation of the tracking states

ηllk,t = [ẋk,t, ψk,t, ψ̇k,t, Yk,t]
T from the reference ηllrefk,t = [ẋrefk,t , ψrefk,t , ψ̇refk,t ,

Yrefk,t]
T as well as the input and input rate penalty.

JN (Ξt, Ut,∆Ut) =
s+N−1
∑

k=t

‖ηllk,t − η
ll
refk,t
‖2Qll + ‖uk,t‖

2
Rll

+ ‖∆uk,t‖
2
Sll
, (6.22)

The inputs vector uk,t = [δf , Fbl, Fbr ]
T consists of the steering angle δf ,

left braking force Frl and right braking force Fbr. The braking logic in [33]

is used to distribute the corresponding torques at the four wheels.
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6.2.3 Simulation and Experimental Results

Simulation and experimental tests are conducted to evaluate the proposed

controller. The MPC problem has been implemented as a C-coded s-function

where NPSOL [49] is used to solve the high level optimization. At the low-

level, the nonlinear program is solved by using a sequential quadratic pro-

gramming approach [36] and the quadratic program is solved using the QP

solver routine available in [2], which implements the Dantzig-Wolfe’s algo-

rithm.

Simulation Setup Description

Real-time simulation of the controller is tested on a dSPACE rapid prototyp-

ing system consisting of a MicroAutoBox and a DS1006 processor board with

a DS2211 I/O board. The controller runs on the MicroAutoBox. The first

element of the optimal control sequence is passed to DS1006 board, which

simulates the vehicle dynamics using a four wheel vehicle model and Pacejka

tire model [7], and then feeds the current vehicle state back to the controller.

The two components communicate through a CAN bus.

Experimental Setup Description

The experiments have been performed at a test center equipped with icy and

snowy handling tracks. The MPC controller has been tested on a passenger

car, with a mass of 2050 Kg and a yaw inertia of 3344 Kg/m2. The controllers

were run in a dSPACE Autobox system, equipped with a DS1005 processor

board and a DS2210 I/O board.

We used an Oxford Technical Solution (OTS) RT3002 sensing system to

measure the vehicle position and orientation in the inertial frame and the

vehicle velocities in the vehicle body frame. The OTS RT3002 is housed in a

small package that contains a differential GPS receiver, Inertial Measurement

Unit (IMU) and a DSP. The IMU includes three accelerometers and three

angular rate sensors. The DSP receives both the measurements from the

IMU and the GPS, utilizes a Kalman filter for sensor fusion, and calculates

the position, orientation and other states of the vehicle.
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The car was equipped with an Active Front Steering (AFS) and Differ-

ential Braking system which utilizes an electric drive motor to change the

relation between the hand steering wheel and road wheel angles. This is done

independently from the hand wheel position, thus the front road wheel an-

gle is obtained by summing the driver hand wheel position and the actuator

angular movement.

The sensor, the dSPACE Autobox and the actuators communicate through

a CAN bus.

Results and Discussions

The controller is implemented on a test vehicle with the following tuning

parameters. The high-level of the hierarchical Spatial MPC framework solves

the Nonlinear MPC problem (5.3) with model (2.39) and cost (6.19) and with

the following parameters.

Table 6.3: Tuning parameters for high-level Spatial MPC

ds = 1.5 m Hp,hl = 15

Hu,hl = 12 iHu,hl = 3

δf ∈ [−10 ◦, 10 ◦] ∆δf ∈ [−17 ◦, 17 ◦]× ds

βr ∈ [−1, 1] ∆βr ∈ [−10, 10]× ds

Qhl = diag(1, 1, 20, 1) Rhl = diag(50, 50)

Shl = diag(0.1, 0.1)

The low-level of the hierarchical Spatial MPC framework solves a Linear

Time-Varying MPC with model (2.3) and cost (6.22) and with the following

parameters
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Figure 6.13: Simulated result. The vehicle entered the maneuver at 50 kph.
The green lines are planned paths from the high-level which are updated
every 200 ms. The black line is the actual trajectory the vehicle traveled.

Table 6.4: Tuning parameters for low-level LTV MPC

Ts,ll = 0.05s Hp,ll = 5

Hu,ll = 3 iHu,ll = 1

δf ∈ [−10 ◦, 10 ◦] ∆δf ∈ [−17 ◦, 17 ◦]× Ts,ll

Fb• ∈ [−1500, 0] ∆Fb• ∈ [−1000, 1000]× Ts,ll

Q = diag(10, 20, 10, 50) R = diag(1, 0.5, 0.5)

S = diag(1, 0.1, 0.1)

The simulation and experimental results are summarized in Figures 6.13

to 6.16. In all tests, the road friction coefficient is approximately 0.3. The

high-level path planner is invoked every 200ms, and the low level every 50ms.

Since the obstacle constraint is formulated as hard constraints on the

100



CHAPTER 6. HIERARCHICAL MODEL . . . 6.2. SPATIAL MODEL PATH PLANNER

0 50 100 150
−10

−5

0

5

10

 

 

Planned path

Actual path

Obstacle

Unsafe zone

Center line

(m)X

(m
)

Y

Figure 6.14: Experimental result. The vehicle entered the maneuver at 50
kph. Friction coefficient of the ground was approximately 0.3. The vehicle
avoided the obstacle and continued to track the lane center. The green lines
are planned paths from the high-level which were updated every 200 ms. The
black line is the actual trajectory the vehicle traveled.

Table 6.5: Low Level Lateral Position (Y) Tracking Error Comparison. Sim-
ulation data corresponds to figure 6.17 and experimental data corresponds
to figure 6.14.

HL Point Mass HL Spatial Bicycle
([cm]) ([cm])

Mean 7.37 1.63
Max 49,42 11.18
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Figure 6.15: Experimental result. The vehicle entered the maneuver at 50
kph. Friction coefficient of the ground was approximately 0.3. The vehicle
avoided the two obstacles and continued to track the lane center.

states, the high level path planner will always plan a tight path passing the

obstacle due to the tracking error and input penalties, see the green line right

below the obstacle in Figure 6.13 as an example. To avoid this problem, an

unsafe zone around the obstacle is added in the tests. The unsafe zones are

shown in gray in Figures 6.14-6.16. Figure 6.13 and 6.14 are the simulation

and experimental results of the vehicle avoiding one obstacle on a slippery

road. The two tests show consistent performance. Figure 6.15 and 6.16 show

the experimental results for avoiding two obstacles with different distances

between them. In both cases the vehicle was able to avoid both obstacles

and get back to the lane center afterwards. In Figure 6.16 where the distance

between the two obstacles was large, the vehicle was already trying to get

back to the lane center before the second obstacle came into the planning

horizon.

Figure 6.17 compares the controller’s performance with a previously pro-

posed controller in [46], which uses a time-dependent point mass model at

the high level. The blue dots in the figures are the reference for the low-level
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Figure 6.16: Experimental result. The vehicle entered the maneuver at 50
kph. Friction coefficient of the ground was approximately 0.3. The vehicle
avoided the first obstacle and continued to track the lane center until the
second obstacle came into sight. It then turned left to avoid the second
obstacle.
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(a) Simulation result of the controller in [46]. A time-dependent point mass model is used for
the high level. The vehicle turns early because the high level uses a potential field approach
for obstacle avoidance.
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(b) Simulation result of the new controller. A spatial-dependent bicycle model is used for
the high level.

Figure 6.17: Simulation result comparison with the controller proposed in
[46]. In both cases the high levels replan every 200ms. The same low level
path follower is used, which uses a nonlinear four wheel model and runs every
50ms.
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at each sampling time. We observe that the use of a nonlinear bicycle model

at the high level greatly improves the tracking performance. The use of a

spatial model at the high-level makes the construction of obstacle constraints

straight forward as described in §6.2. On the other hand, the hard constraint

formulation for obstacles is not trivial for general obstacles in the MPC frame-

work of Chapter 5 with time-dependent models. Potential field approaches

are a commonly used solution to this problem. Of course, it is possible to

find indicating functions whose level sets can be used to form the obstacle

constraints. This is usually not straightforward, especially if one wants the

indicating function to have nice properties, such as differentiability, in order

to speed up the optimization problem.
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Chapter 7

Integrated Safety Framework

In this chapter we design a novel active safety system for prevention of un-

intended roadway departures and collision avoidance with a human-in-the-

loop. A typical active safety system architecture is modular [3], with separate

threat assessment, decision making, and intervention modules, see Figure 7.

In particular, the threat assessment module deals with the task of deter-

mining whether interventions are necessary and plays an important role in

the interaction with the driver. The threat assessment module repeatedly

evaluates the driver’s ability in maintaining safety in each situation and this

information is used by the decision making module in order to decide whether

and how to assist the driver. It is a challenge for an active safety system to

properly assess when to intervene. In the literature, a large variety of threat

assessment and decision making approaches can be found [22, 78, 62, 29].

In the simplest approaches, used in production vehicles, automated steering

or braking interventions are issued when simple measures like the time to

collision [22] or time to line crossing [78] pass certain thresholds.
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Figure 7.1: A block diagram of the typical structure of a modular active

safety system.

More sophisticated approaches, on the other hand, include the computa-

tion of Bayesian collision probabilities [62] or sets of safe states from which the

vehicle can safely evolve [29]. In advanced safety systems, such as roadway

departure prevention, the intervention module has the goal to both deter-

mine a safe trajectory and coordinate the vehicle actuators. The literature

on vehicle path planning and control is extensive, see, e.g. [32, 72, 104, 48].

Because of its capability to systematically handle system nonlinearities and

constraints, work in a wide operating region and close to the set of admissi-

ble states and inputs, Model Predictive Control (MPC) has been shown to

be an attractive method for solving the path planning and control problem

[32, 33]. Previous approaches to lane departure prevention using predictive

control, as in [4], make the assumption that the vehicle is traveling at a con-

stant velocity (and can therefore not consider braking), and does not use any

information about the human driver.

Rather than separately solving the threat assessment, decision making,

and intervention problems, we reformulate them as a single combined op-

timization problem. In particular, a predictive optimal control problem is
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formulated which simultaneously uses predicted driver’s behavior and deter-

mines the least intrusive intervention that will keep the vehicle in a region

of the state space where the driver is deemed safe. The proposed controller

is always active, which avoids the design of switching logic or the tuning

of a sliding scale. In addition, since the proposed controller is designed to

only apply the correcting control action that is necessary to avoid violation

of the safety constraints, the intrusiveness of the safety application is kept

minimal. Furthermore, the full nonlinear dynamics of the vehicle are consid-

ered in the optimization problem and the corrective action can augment both

the driver’s steering and braking. Preliminary findings were reported by the

authors in [53, 52] with simulation results. In this chapter we detail the

proposed framework and show its effectiveness through experimental results

implemented on a passenger vehicle.

The chapter is organized as follows: in Section 7.1 we present the In-

tegrated Active Safety Framework for collision avoidance and unintentional

lane departure. In Section 7.2 we present simulation results both from live

interaction with a driving simulator as well as from human driver data col-

lected offline. Then, in Section 7.3 we present experimental results collected

from implementing the proposed active safety system on a passenger vehi-

cle at a testing facility at Volvo in Gothenburg, Sweden. Finally, Section

7.5 proposes an approach to incorporate uncertainty into the framework and

still guarantee safety. Simulation results approaching single and multiple

obstacles are presented.
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7.1 Integrated Active Safety

In this section we introduce the Active Safety Framework where we formulate

a single combined optimization problem, drawing from the vehicle models of

Chapter 2, the driver models of Chapter 3, and the Model Predictive Con-

trol methodology of Chapter 5. Consider the discretized Nonlinear Spatial

Vehicle Model presented in §2.4,

ξ(s+ 1) = f s(ξ(s), u(s)). (7.1)

To explicitly consider the driver’s intention over the prediction horizon of the

MPC problem PNL we define the input u = [δ, βr] where δ = δ̂d + δc and δ̂d

is the nominal driver’s input from Equation (3.17),

δ̂d = Kyey +Kψeψ +Kψ∆ψroad, (7.2)

and δc is the corrective steering action decided by the MPC control law, along

with corrective braking action βr. Then, the optimization problem, following

the general formulation of problem PNL, is stated as,

PDM : min
Uc,ε

JN(Uc,∆Uc) (7.3a)

s.t. ξk+1,s = f dm(ξk,s, uk,s), s = t, ..., N − 1, (7.3b)

ξk,s ∈ X , k = s+ 1, ...s+N − 1, (7.3c)

uk,s ∈ U , k = s, ..., s+N − 1, (7.3d)

ξs,s = ξ(t), (7.3e)

ξN,s ∈ Xf , (7.3f)

where the model f dm(·, ·) : Rn ×R
m → R

n in Equation (7.3b) is constructed

by placing the nominal driver model of Equation (7.2) in closed-loop with

the vehicle dynamics of Equation (7.1). That is,

ξ(s+ 1) = f dm(ξ(s), [δ̂d(s) + δc(s), βr(s)]), (7.4)
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where δc(s) and βr(s) are a solution to problem PDM at distance s. By for-

mulating the problem in this way the predicted driver’s inputs are explicitly

considered and the optimization problem tries only to minimize the correc-

tive action needed to satisfy the safety constraints in Equation (5.3c). By

doing this, we can then write the cost function to be minimized as,

J(Uc,∆Uc) =

s+N−1
∑

s=k

‖uc(s)‖
2
Q + ‖∆uc(s)‖

2
R + ρε, (7.5)

where Uc = {uc,s, uc,s+1, ..., uc,s+N} is the vector of optimal corrective actions,

∆Uc = {∆uc,s,∆uc,s+1, ...,∆uc,s+N} is the vector of optimal change rates of

corrective actions, and the slack variable ε has been added to soften the con-

straints, as detailed in §2.6. Q and R are weights of appropriate dimension.

Note 8 We note that no penalty on deviation from a tracking reference ηref

is imposed in the cost function (7.14), as was the case in Chapter 6. The

objective here is to ensure that the safety constraints (7.3c) are not violated

while utilizing minimal control action. If the driver steering model (7.2) is

alone capable of steering the vehicle without violating the safety constraints

(7.3c) no control action will be applied and the optimal cost will thus be zero.

Remark 10 In addition to the soft constraints we have imposed hard con-

straints. Equation (5.3d) reflects limitations set by the actuators.
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7.2 Simulation Results

In this section we present simulations showing the behavior of the proposed

framework. The next section will present experimental results of the pro-

posed controller implemented on a passenger vehicle. We present results

from simulations using human driver data stored offline. We solve problem

PDM using Matlab and Tomlab/NPSOL to solve the optimization problem.

Then, we implement the controller on a dSPACE embedded control unit and

run simulations using real-drivers interacting with CarSim vehicle simulation

software. The proposed controller is run in real-time. Section 7.2.1 focuses

on unintended roadway departure scenarios while Section 7.2.2 focuses on

collision avoidance of roadside obstacles. Both subsections are organized

internally by the type of scenario considered.

7.2.1 Unintentional Roadway Departure

This subsection focuses on ensuring the safety of the driver during an unin-

tentional lane departure. We will focus on two scenarios that are a common

cause of traffic accidents, as noted in Chapter 4, and are both caused by driver

distraction: drifting out of the lane and approaching a curve too quickly. The

next subsection 7.2.2 will focus on collision avoidance.

Simulation Results with Offline Human Driver Data

In this section we validate the behavior of the proposed active safety system

by analyzing the results from Matlab simulations. We consider scenarios

three scenarios where the driver,

1. safely negotiates a curve,

2. approaches a curve too quickly and is not prepared to safely navigate

the turn,

3. unintentionally veers off a straight road into oncoming traffic.

Human drivers interacting with a driving simulator were used to collect

the data for the results presented. The estimation algorithm presented in
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§3.1.1 and [29] is implemented to estimate parameters of the driver model

(3.17). The vehicle and design parameters in Tables 7.1 and 7.2 were used

to implement the predictive controller of Equations (5.3).

Table 7.1: Vehicle parameters

m = σ = wt = B1, B2 = C1, C2 =
2050 kg 0.7 1.63 m −10.5 0.5
Jz = lf = lr = B3, B4 = C3, C4 =

3344 kgm2 1.43 m 1.47 m −12.7 0.5
µ a b c
1.0 2.12 m 2.66 m 1.77 m

Table 7.2: Design parameters

umax = N = αmax =
[0.7 rad, 0 N ]T 21 4◦

umin= ds = αmin =
[−0.7 rad,−µmg N ]T 1 m −4◦

∆umax = ρ = eymax =
[1.4 rad, µmg N ]T 104 2.5 m

∆umin = R = eymin
=

[−1.4 rad,−µmg N ]T diag(1, 10) −2.5 m

The driver estimation algorithm adapts and updates the parameters of

the driver model as new data becomes available. Since the estimation is con-

ducted in nominal driving conditions, the resulting driver model is expected

to be representative of the nominal behavior of the driver. The implications

of this is discussed next, as the behavior of the suggested predictive controller

is analyzed for the three considered scenarios.
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(a) Vehicle positions in Trajectory 1 calculated by the predictive controller. Corrective

action is not required as the expected behavior of the driver keeps the vehicle in the center

of the lane.
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(b) Steering angles: δc, the corrective action from the controller, δ̂d, the driver model pre-

diction, δ, the closed-loop steering used in the predictive control problem, and δd, the actual

steering from the human driver.

Figure 7.2: Simulation results. In these plots we show nominal driving be-

havior where the driver is not in need of assistance. These results show the

behavior of the controller when the driver is capable of maintaining safety.

The minimally invasive nature is illustrated by the controller calculating zero

assistance in a safe situation.

Nominal Behavior Consider Figure 7.2(a) which depicts a driving situ-

ation where the driver is attentive and is safely steering the vehicle down
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the center of the lane, within the road bounds. The circled vehicle indicates

the current vehicle position, marked tcurr, and the others illustrate the fu-

ture vehicle positions, predicted by the predictive controller. We refer to this

trajectory as Trajectory 1. In this situation, the estimated driver model is

capable of keeping the vehicle in the lane which indicates that the nominal

behavior of the driver is safe. The action that minimizes the cost function

(7.12a) is thus zero corrective steering and braking, hence the driver remains

in control of the vehicle.

Figure 7.2(b) shows a comparison of the predicted steering trajectory,

Trajectory 1, and the actual steering trajectory of the driver, who was allowed

to remain in full control of the vehicle. We note that the corrective steering

action δc is zero in Trajectory 1, hence the closed-loop trajectory is predicted

by the driver model only, i.e., δ = δ̂d. We also note that the steering angle

δ̂d in Trajectory 1 corresponds well with the driver’s actual steering angle δd.

In this situation the adopted predictive controller could correctly predict the

nominal behavior of the driver and thus avoided intervening.

Excessive Speed in a Curve Next we consider a scenario where the

driver is approaching a curve too quickly to safely navigate the turn. An

intervention from the active safety system is required to keep the driver

safely within the constraints of the lane.
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(a) Vehicle positions in Trajectories 2 and 3. The inset shows the predicted viola-

tion of the position constraints.
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(b) Steering angles in Trajectories 2 and 3
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(c) βr in Trajectory 3

Figure 7.3: Simulation results. The plots capture a snapshot of the prediction

that detects a lane departure by excessive speed in a curve. The controller

augments the driver’s steering and braking to bring the vehicle back within

the lane.

115



CHAPTER 7. INTEGRATED SAFETY . . . 7.2. SIMULATION RESULTS

In Figure 7.3(a) two trajectories are shown. The circled vehicle shows the

vehicle’s current position. The vehicles shown in outline illustrate the future

trajectory of the vehicle controlled by the driver model only (Trajectory 2).

Trajectory 2 indicates that the driver’s nominal behavior leads to a violation

of the position constraints (2.47). Consequently, the predictive controller

corrects the driver’s control action to avoid the constraint violation. The

vehicles in Figure 7.3(a) show the trajectory predicted by the predictive

controller (Trajectory 3). Compared to Trajectory 2, the vehicle motion

has been slightly corrected such that the vehicle remains in the lane.

Figure 7.3(b) shows the steering angles δ, δ̂d and δc in Trajectories 2 and 3

and Figure 7.3(b) shows the braking signal βr in Trajectory 3. Figure 7.3(b)

shows that, as indicated by δ̂d in Trajectory 2, the driver is expected to

steer and attempt to follow the path prescribed by the road. However, we

note that the magnitude of δ̂d in Trajectory 2 is too small, hence in order to

maintain the vehicle within the road boundaries, the driver would have to

deviate from the nominal behavior described by the estimated driver model.

Figures 7.3(b) and 7.3(c) show how the predictive controller simultaneously

corrects the driver’s steering and slightly brakes the vehicle. In particular we

note that the steering magnitude |δ| in Trajectory 3 is initially significantly

higher than |δ̂d| in Trajectory 2. We also note that the control signals δc and

βr vanish smoothly as the vehicle path has been recovered and the driver

model is again capable of keeping the vehicle in the lane.
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Trajectory 4

Trajectory 5
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(a) Vehicle positions in Trajectories 4 and 5.
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(b) Steering angles in Trajectories 4 and 5.

Figure 7.4: Simulation results. These plots capture a snapshot of the predic-

tion where the driver will depart the lane, as shown in (a). The controller

augments the driver’s steering, (b), to satisfy the safety constraints and keep

the vehicle within the lane.

Unintentional Drifting Consider Figure 7.4 where the driver is distracted

and is veering off the shoulder of the lane. In Trajectory 4 the vehicle is con-

trolled by the driver model and is illustrated with the vehicles in outline.

In Trajectory 5 the vehicle is instead controlled by the predictive controller.

At the points of the drawn vehicles in Figure 7.4, the nominal driver be-
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havior is no longer sufficient to keep the vehicle in the lane, as indicated by

Trajectory 4.

Since the lane departure in this situation is related to distraction rather

than excessive speed, the predictive controller does not brake. Instead, we

note that the predictive controller corrects the driver’s steering to steer the

vehicle back in the lane. We also note that in Trajectory 5 the signal δc

smoothly vanishes to zero as the vehicle’s path is recovered and the driver

model is again capable of keeping the vehicle in the lane.

We remark that the adopted driver model does not capture the driver’s

distraction. Consequently the predictive controller does not explicitly ac-

count for this. In the considered scenarios, the predictive controller simply

identified that even though it is still possible to keep the vehicle in the lane,

the driver would have to deviate from the nominal behavior described by

the driver model. Even though, the performance of the considered approach

could potentially be enhanced by incorporating a driver monitoring system,

we observed that in these two scenarios, the proposed approach is beneficial

without depending on such a system.

Real-time Simulation Results with Human Driver

In this section the proposed framework is tested through real-time simulation

using human drivers. The controller is run on a dSPACE MicroAutobox. A

high-fidelity vehicle model is simulated using state of the art vehicle simula-

tion software CarSim. The scenario is tested live with a real driver interacting

with the system by manipulating steering, braking, and throttle inputs. Ta-

ble 7.3 lists the parameters used for the real-time simulation. We make the

following remark for the real-time implementation:

Remark 11 Each control input, δc and βr (the solution from the optimiza-

tion problem) is held constant for three sampling times, Hi = 3. This

reduces the complexity and the number of optimization variables becomes
N
Hi
· mr + 1 = 9 where mr is the number of inputs and the addition of 1

comes from the slack variable, ǫ.
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Table 7.3: Real-Time Design parameters

umax = N = αmax =

[0.2 rad, 0.5 [−]]T 12 4◦

umin= Ts = αmin =

[−0.2 rad,−0.5 [−]]T 200 ms −4◦

∆umax = Q = eymax =

[0.4 rad, 1 [−]]T diag(1, 1) 0.7 m

∆umin = R = eymin
=

[−0.4 rad,−1 [−]]T diag(1, 1) −0.7 m

Three scenarios are detailed, two are shown in Figure 7.6 inset A and B

and the third is shown in Figure 7.8.

Distracted Driver Approaching a Curve In Figure 7.6 inset A, the

driver approaches a curve and simulates distraction by removing his hands

from the steering wheel. The vehicle enters the curve at 90 kph. The con-

troller correctly predicts the vehicle will exit the lane and adds corrective

steering to safely negotiate the curve. After exiting the curve the driver

resumes control.
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LIVE INTERACTION

Host PC Driver Inputs

DS1006

Vehicle Simulation
MicroAutobox 1401

Embedded Control

REAL-TIME CONTROL & SIMULATION

Figure 7.5: Setup
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Figure 7.6: The complete trajectory of the vehicle within the lane with two

insets, A and B, detailing two interventions. The first occurs when the dis-

tracted driver approaches a curve and the second occurs when the driver lets

the vehicle stray off the road. In both situations the controller corrected the

steering to keep the vehicle safely on the road.

In Figure 7.6 inset B, the driver again simulates distraction while driving

on a straight section of the road to let the car stray off the road. The

controller predicts a roadway departure and adds corrective steering to keep

the vehicle within the lane. In both situations, A and B, braking was not

needed to keep the driver and vehicle safe.
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Figure 7.7: The upper plot shows the corrective steering inputs for the real-

time simulation shown in Figure 7.6 inset A and the lower plot depicts the

corrective steering for Figure 7.6 inset B.

Figure 7.7 plots the corrective steering action needed for the two inter-

ventions detailed in Figure 7.6 inset A and B. In scenario A the driver did

not manipulate the steering wheel and it can be seen that multiple corrective

actions were needed to keep the vehicle within the lane and navigate around

the curve. Whereas in scenario B only a brief intervention was needed to

correct the vehicle from straying out of the lane.

Distracted Driver Drifting from Lane. A scenario is shown in Figure

7.8 where the driver unintentionally drifts over to the left side of the road.

In this scenario the driver is distracted and is heading for a collision by

roadway departure. The active safety system adds corrective steering to
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keep the vehicle on the road. As shown in Figure 7.10 only corrective steering

was needed and only a minimal amount of braking. The controller briefly

augments the steering angle to straighten the vehicles trajectory and the

safety constraints are not violated. A plot of 4 vehicle states of interest,

[ey, eψ, ẋ, ψ̇] are shown in Figure 7.9. The lateral error offset, ey, clearly

indicates the vehicle is corrected to stay within the upper road bound of 5

m.
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Y
(m

)

X(m)

Figure 7.8: The trajectory of the vehicle during a roadway departure inter-

vention. The driver is distracted and the vehicle drifts to the left of the road.

An intervention occurs and the vehicle safely remains within the safety con-

straints imposed by the road bounds. The associated states and inputs can

be seen in Figures 7.9 and 7.10, respectively.
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Figure 7.9: A plot of 4 vehicle states, [ey, eψ, ẋ, ψ̇], during the intervention

depicted in Figure 7.8. The controller intervenes just before the vehicle

reaches 800 m in the X-direction. The lateral offset, ey, is constrained by

the upper limit of the roadway, in this case 5 m.

124



CHAPTER 7. INTEGRATED SAFETY . . . 7.2. SIMULATION RESULTS

750 800 850
−0.2

0

0.2

δ c
(r
a
d
)

750 800 850
−0.1

0

0.1

β
r

X (m)

Figure 7.10: A plot of the inputs added by the controller during the inter-

vention depicted in Figure 7.8. The controller briefly adds corrective steering

to keep the vehicle on the road. In this scenario very little braking action

was required.

7.2.2 Collision Avoidance

In this section we validate the behavior of the proposed active safety system.

In Section 7.2.2 we first show a situation where the driver is attentive and

capable of avoiding an obstacle . In this situation, the safety system correctly

detects that the driver is capable of performing the driving task and does not

intervene. Next, in Section 7.2.2, we demonstrate the ability of the adopted

approach to detect critical situations and adequately assist the driver in

avoiding accidents. We also demonstrate how the performance of the safety

system can potentially be influenced if the system is complemented with a

driver monitoring system that is capable of assessing whether the driver is
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distracted. Finally, in Section 7.2.2, we consider a scenario with multiple

obstacles and demonstrate the ability of the controller to avoid collisions in

such challenging situations.

For the results presented next, the estimation algorithm used in [29] is

implemented to estimate parameters of the driver model (3.17) and the ve-

hicle and design parameters in Tables 7.6 and ?? are used to implement the

predictive controller (5.3).

The driver estimation algorithm adapts and updates the parameters of

the driver model as new data becomes available. Since the estimation is con-

ducted in nominal driving conditions, the resulting driver model is expected

to be representative of the nominal behavior of the driver. The implica-

tions of this are discussed next, as the behavior of the suggested predictive

controller is analyzed for the considered scenarios.

Attentive Driver

We first show a situation where the driver is attentive. Consider Figure 7.11

which shows a situation where an attentive driver is negotiating a curve and

encounters an obstacle in the path.

(m)X

(m
)

Y

Figure 7.11: A situation where an attentive driver encounters an obstacle in

the path. The driver is capable of avoiding the obstacle and for this reason,

the MPC controller doesn’t intervene.
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The dashed line shows the path traversed by the driver. Clearly, the

driver has no problems avoiding the obstacle. The shaded vehicles illustrate

the trajectory that is predicted by the MPC controller when the vehicle is in

the position shown with a darker color. In this situation the driver behavior,

modeled by (3.17), is capable of avoiding the obstacle without assistance

from the MPC controller. The MPC controller correctly predicts that the

driver can maintain a safe trajectory and the decision to not intervene in this

situation is correct.
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Figure 7.12: The inputs from the optimization, [δc, βr], the driver model, δ̂d,
and the closed-loop steering, δ.

The final vehicle trajectory, along with the box geometry of the vehicle,

is shown in Figure 7.11 and the inputs in Figure 7.12. The discrete jumps in

inputs from the driver model, δ̂d, are from the moving of the preview point

to account for the obstacle. For an active safety system it is important to not

intervene when it is not necessary. This simulation shows the behavior when

the driver is able to maintain safety himself. The optimal solution from the

controller is zero and an intervening action does not occur.
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Distracted Driver

In this section we consider a scenario where the driver is distracted. Consider

Figure 7.13

Figure 7.13: The closed-loop vehicle trajectory where the driver is assisted by

the MPC controller. The controller detects that the nominal driver behavior

is no longer sufficient to maintain a safe vehicle trajectory and intervenes in

order to avoid the road side obstacle.

where the vehicle is approaching an obstacle and the driver is distracted.

In this situation the driver doesn’t account for the obstacle and instead just

drives as if the object wasn’t present. The inset in Figure 7.13 shows a

comparison between the predicted trajectory obtained with the driver model

(3.17) and the trajectory obtained when the driver is assisted by the MPC

controller. These predictions are initiated at the position where the MPC

controller first starts assisting the driver, i.e., when the two predicted tra-

jectories no longer overlap. We note that, at this position, even though the

driver is assumed attentive and will try to avoid the obstacle, the vehicle is

already in a state where the driver would have to deviate from the nomi-

nal behavior, described by the model (3.17), in order to avoid the obstacle.
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The MPC controller, therefore, assists the driver with as much control ac-

tion as necessary to avoid the obstacle while minimizing the cost function

(7.12a). Figure 7.14 shows the steering angle of the distracted driver and the

controller’s corrective steering angle and braking force.
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Figure 7.14: The inputs required from the safety system, the controller

slightly steers and brakes the vehicle to avoid the roadside obstacle and

smoothly gives back control to the driver once the obstacle has been avoided.

We note that the controller slightly steers and brakes the vehicle to avoid

the roadside obstacle and smoothly gives back control to the driver once the

obstacle has been avoided and the vehicle is again in a state where the driver

is expected to be capable of avoiding violation of the safety constraints.

Figure 7.13 demonstrates the ability of the adopted MPC approach to in-

tervene and avoid roadside objects without utilizing any information about

driver’s distraction. Consider the scenario shown in Figure 7.15 where the

driver model in the MPC controller has been modified to account for a dis-

tracted driver.
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Figure 7.15: The closed-loop trajectory of the vehicle. The inset shows

a snapshot of the time instant an intervention was required. In this case

a driver monitoring system has detected that the driver is distracted and

consequently, we note that the intervention is activated earlier.

Information about driver distraction might be obtained through a driver

monitoring system like e.g. the monitoring system suggested in [89]. Fig-

ure 7.15 shows that the MPC controller is capable of avoiding the obstacle

in this case and the inset shows how the distracted driver is expected to hit

the obstacle. Nonetheless, we note in Figure 7.16 that the intervention is

activated earlier in this case than in Figure 7.14 and that consequently the

control signals are kept smaller.
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Figure 7.16: The input signals in the scenario shown in Figure 7.15. Since

the intervention is issued early, the control action is smaller when compared

to the input signals shown in Figure 7.14 .

Multiple Obstacles

Next we show a scenario that is more challenging. In Figures 7.17-7.18, a

distracted driver is approaching multiple obstacles. The inset in Figure 7.17

shows a snapshot of the moment the second obstacle is encountered. A driver

monitoring system has detected that the driver is distracted and the driver

model in the MPC algorithm has been modified accordingly. Again we note

that the controller intervenes to satisfy the constraints in order to minimize

the control action, as prescribed by the cost function (7.12a). The results

show the ability of the active safety system to successfully navigate around

multiple obstacles while minimizing the interference to the driver.
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Figure 7.17: The closed-loop trajectory of the vehicle in a situation with

multiple obstacles. The inset shows a snapshot of the moment the second

obstacle was encountered and intervention was required.
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Figure 7.18: The inputs showing the corrective action, [δc, Fb], of the safety

system required to keep the driver safe while navigating through multiple

obstacles.
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7.3 Experimental Results

In this section we present the results from real-world tests performed on

an experimental test bed, a prototype Volvo S60 passenger vehicle. The

experiments were performed at Volvo’s headquarters in Gothenburg, Sweden.

The controller was written in C-coded s-Functions and compiled to a dSPACE

embedded control platform using Matlab’s Realtime Workshop. The ECU

is equipped with a 1 GHz DS1005 PPC Board. All the road information,

such as lane boundaries, curvature, and road angles, as well as the vehicle

state within the lane, is calculated using vision processing from an optical

camera and communicated through the system using a CAN-interface. The

parameters for the vehicle model, used by the model predictive controller, are

stated in Table 7.6. The tuning parameters for the controller were adjusted

for the real-time implementation and are reported in Table 7.4. To speed-

up the computation time on the embedded hardware we make the following

remark:

Remark 12 The geometric constraint on ey from Equation (2.47) is simpli-

fied to a tightened constraint on the center of gravity of the vehicle. A box

constraint is set where ey ∈ [−0.7, 0.7].

Table 7.4: Real-Time Design parameters

umax = Hp = Hc = αmax =

[0.2 rad, 0.5 [−]]T 12 4◦

umin= Ts = αmin =

[−0.2 rad,−0.5 [−]]T 200 ms −4◦

∆umax = Q = eymax =

[0.4 rad, 1 [−]]T diag(1, 1) 0.7 m

∆umin = R = eymin
=

[−0.4 rad,−1 [−]]T diag(1, 1) −0.7 m
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7.3.1 Test 1: Excessive Speed in a Curve

The intent of this experiment was to capture the controller’s performance for

a scenario in which the driver is distracted and approaching a curve at an

excessive speed. The driver brought the car to an initial velocity of 50 kph

and maintained steady driving in the center of the lane. The driver then let

go of the steering wheel and approached a curve. The resulting performance

follows.
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Figure 7.19: The paths predicted by the controller at each time instant. The

initial condition is the circle marker, the dashed lines are the constraints

imposed by the lane on the center of the vehicle, and the solid lines are the

actual road bounds. This plot shows the time history leading up to the first

intervention only at approximately t = 6 seconds.

Figure 7.19 shows the paths predicted by the controller at each time

instant. As the vehicle approaches the curve it begins to stray out of the

lane. As the lane constraints become active the controller adds corrective

steering to keep the predicted trajectory within the lane, as can be seen by

the curved paths at the lower lane constraint.

134



CHAPTER 7. INTEGRATED SAFETY . . . 7.3. EXPERIMENTAL RESULTS

0 2 4 6 8 10
−1

−0.5

0

0.5

e y
(m

)

0 2 4 6 8 10
−0.05

0

0.05

e ψ
(r
a
d
)

0 2 4 6 8 10
12.8

13

13.2

13.4

ẋ
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Figure 7.20: A plot of 4 states of the vehicle, [ey, eψ, ẋ, ψ̇], during the exper-

iment in section 7.3.1. This plot details the moment the controller intervenes

at approximately 6 seconds, as shown in Figure 7.19. The velocity is slightly

reduced and the lateral offset is corrected to keep the vehicle inside the lane.

The associated inputs are shown in Figure 7.21.
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Figure 7.21: The corrective steering and braking action induced by the con-

troller during the intervention depicted in Figures 7.19 and 7.20 during the

experiment in section 7.3.1. The cost is also shown where the spike at ap-

proximately 6 seconds coincides with the soft constraint, ǫ, taking a small

value. The inputs are shown correcting the constraint violation.

The associated states and inputs corresponding to Test 1 are shown in

Figures 7.20 and 7.21, respectively. In Figure 7.20 a time-history of the

states of the vehicle is shown. The lateral offset, ey, is seen to approach

the lower bound of the road as the controller intervenes. A jump in yaw

angle, eψ, and yaw rate, ψ̇, is seen, as well as a decrease in velocity, as the

controller acts to keep the vehicle within the lane. The inputs calculated by

the controller, both steering, δc, and braking, βr, are shown in Figure 7.21.

As the road boundary is approached the controller adds corrective steering

and braking. The moment the vehicle is no longer threatened to depart the

road the corrective action returns to zero. Videos of the experiments can be
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found online in [60].

7.3.2 Test 2: Unintentional Drifting

In this experiment we emulate a distracted driver by leaving the steering

wheel unattended. The vehicle starts to stray off the road to the left into

oncoming traffic. As the road boundary is approached the controller adds

corrective steering and braking to keep the vehicle within the lane. The

states are shown in Figure 7.22 and the inputs are shown in Figure 7.23. The

intervention during this experiment is more subtle than the experiment in

section 7.3.1 because the vehicle approached the upper bound at a shallower

angle.
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Figure 7.22: A plot of 4 states of the vehicle, [ey, eψ, ẋ, ψ̇], during the exper-

iment in section 7.3.2. The vehicle approaches the upper bound on ey and

the controller corrects the steering and braking to remain inside the lane.

The associated inputs are shown in Figure 7.23.
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Figure 7.23: The corrective steering and braking action induced by the con-

troller during the intervention depicted in Figure 7.22 during the experiment

in section 7.3.2.

It is important to note here that the soft-constraint is violated (ey exceeds

0.7 m). This is attributed to the time-delay in the system. The controller

itself has a sample time of 200 ms, as noted in Table 7.4. The vision system

also has a time-delay that is estimated to also be approximately 200 ms.

This additive delay limits our vehicle speed to be around 50 kph for effective

interventions.
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7.4 Set-based Robust Active Safety

Consider the uncertain driver model presented in §3.3. It is our aim to pro-

vide robust guarantees of constraint satisfaction even in the presence of the

driver’s uncertain behavior. The uncertainty in the driver model is handled

at the design stage by the computation of a robust invariant set that cap-

tures the spread of the vehicle’s future trajectories given the uncertainty in

the driver model. By tightening the constraints of the original nominal sys-

tem we solve the optimization problem to yield the optimal corrective action

needed to augment the driver’s steering to ensure satisfaction of the safety

constraints in the presence of the uncertain driver behavior. This approach

is often called Tube-based MPC in the literature [73] and was presented in

§5.3.1. The proposed controller is always active, which avoids the design of

switching logic or the tuning of a sliding scale. In addition, since the pro-

posed controller is designed to only apply the correcting control action that

is necessary to avoid violation of the safety constraints, the intrusiveness of

the safety application is kept minimal.

In this section we introduce a Robust Model Predictive Controller (RMPC)

for use with the modeled uncertainty on the future driver inputs. The Inte-

grated Framework of §7.1 is slightly modified to include a robust control law

that can explicitly account for this uncertainty. The objective of the Robust

Model Predictive Controller is to determine a corrective steering action to

keep the driver safe in the presence of uncertain driver input. Consider the

Linear Vehicle Model of §2.5, compactly written as,

ξ̇(t) = A ξ(t) +B u(t) + Eψ̇road(t), (7.6)

and the Uncertain Driver Model of §3.3, written as,

δ̂d(t) = Fξ(t) +G∆ψroad(t) + w(t). (7.7)

The closed-loop Driver-in-the-Loop Uncertain Model of §3.5 is obtained by

setting,

u(t) = δ̂d(t) + v(t), (7.8)
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where v(t) is chosen as the Robust MPC law and the closed-loop system is

compactly written as,

ξ̇(t) = Adm ξ(t) +B v(t) + Edmp(t) +Bw(t). (7.9)

Denote the control sequence and the disturbance sequence as v = {v0, v1, ..., vN−1}

and w = {w0, w1, ..., wN−1} for t = 0...N − 1. Let Φ(t; ξ0,v,w) denote the

solution of (7.9) at time t controlled by v when ξ(0) = ξ0. Furthermore, let

Φ̄(t, ξ0, ū) denote the solution of the nominal system

˙̄ξ(t) = Adm ξ̄(t) +B ū(t) + Edmp(t) (7.10)

at time t controlled by the nominal control sequence ū = {ū0, ū1, ..., ūN−1}

when ξ(0) = ξ0. Denote the predicted nominal state trajectory by ξ̄ =

{ξ̄0, ξ̄1, ..., ξ̄N−1}.

By following Algorithm 1 in §5.3 a Robust Positive Invariant Set (defini-

tion 3) is calculated using the robust control law of Equation 5.24,

v(t) = ū(t) +K(ξ(t)− ξ̄(t)), (7.11)

where ū(t) is the feed-forward term for the nominal system and K(ξ(t)− ξ̄(t))

is the feed-back term acting on the error between the nominal state and the

actual state where K is chosen according to the discussion in §5.3. This

proposition states that if the control law (7.11) is used it will keep the states

ξ(t) = Φ(t; ξ0,v,w) of the uncertain system (7.9) within the robust posi-

tive invariant set Z (definition 3) centered on the predicted state trajectory

Φ̄(t, ξ0, ū) of the nominal system (7.10) for all admissible disturbance se-

quences w. Now, we formulate the Robust Model Predictive Control Problem

following the general formulation of problem PNL in §5.1:
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PROB : min
Ū ,ε

JN(Ū(t),∆Ū(t)) (7.12a)

s.t. ξk+1,t = f dm(ξk,t, uk,t), k = t, ..., N − 1, (7.12b)

ξk,t ∈ X̄ , k = t+ 1, ...t+N − 1, (7.12c)

uk,t ∈ Ū , k = t, ..., t+N − 1, (7.12d)

ξt,t = ξ(t), (7.12e)

ξN,t ∈ X̄f , (7.12f)

where the model f dm(·, ·) : Rn×Rm → R
n in Equation (7.12b) is model (7.10)

with control law (7.11), i.e. the nominal system dynamics. The constraints

in Equations (7.12c)-(7.12f) are the tightened constraint sets,

X̄ = X ⊖ Z, Ū = U ⊖KZ. (7.13)

Then, the corrective steering action calculated by problem PROB for the

nominal system (7.10) and tightened constraints (7.13) will ensure persistent

constraint satisfaction for the controlled uncertain system. The cost function

to be minimized is,

J(Ū ,∆Ū) =
t+N−1
∑

t=k

‖ū(t)‖2Q + ‖∆ū(t)‖2R + ρε, (7.14)

where Ū = {ūt, ūt+1, ..., ūt+N} is the vector of optimal corrective actions,

∆Ū = {∆ūt,∆ūt+1, ...,∆ūt+N} is the vector of optimal change rate of cor-

rective actions, and the slack variable ε has been added to soften the state

constraints, as detailed in §2.6. Q and R are weights of appropriate dimen-

sion.
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ū

x̄

Driver-in-the-Loop Model

Vehicle

Optimizer

x

+
+

+
+
+

+
+
+

+
+

+ −
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Figure 7.24: Block diagram illustrating the structure of the simulated system.

The actual plant is not shown.

7.4.1 Simulation Results

In this section the results from simulations are presented. The model pre-

dictive control problem is solved using Tomlab/NPSOL at each time step.

The off-line analyses to determine the robust invariant sets and solve for

the tightened constraints was done by running Algorithm 1 in Matlab using

MPT Toolbox. Table 7.6 lists the parameters used in the simulations. Two

scenarios are considered, where the

1. driver approaches an obstacle on the right of the roadway,

2. driver navigates between two obstacles obstructing the lane.
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Table 7.5: Vehicle parameters

m = Cαi Q = αmax = eymax = ūmax =
2050 kg 80, 000 1 4◦ 0 m 0.16
Iz = N = R = αmin = eymin

= ūmin

3344 kgm2 15 1 m −4◦ −5 m −0.16
µ = Ts = ρ = ēymax = ēymin

= W =
1.0 50 ms 104 −0.365 m −4.635 m [−0.1, 0.1]

Single Obstacle

Figure 7.32 captures a snapshot of the moment the model predictive con-

troller must add corrective steering action. Two trajectories are shown. Tra-

jectory 2 is the one predicted by the nominal driver model only, in Equation

(3.17), and is depicted by the vehicles in outline. This is the expected steer-

ing input predicted for the driver. Clearly, the vehicle is predicted to collide

with the obstacle, denoted by the constraint X . Trajectory 1 is the corrected

trajectory and ensures satisfaction for the tightened constraints X̄ for any

disturbance in the predicted driver model, w ∈ W. The tightened constraints

are shown in dashes and the drawn vehicles show the predicted trajectory

with the corrective action. Figure 7.26 plots the inputs for Trajectory 1 and

2. ū is the added corrective action from the solution to the nominal opti-

mization problem, δ̂d is the nominal driver model from Trajectory 2, and u

is the final augmented steering from Trajectory 1.

Multiple Obstacles

In this section we simulate the proposed controller during a scenario where

the vehicle approaches two obstacles. Similar to the scenario detailed in

section 7.4.1, the vehicle encounters an obstacle in the road and the controller

must intervene to keep the driver safe. Immediately after the first obstacle

the vehicle encounters a second, an intervention is again needed to ensure

the safety constraints are satisfied.

In Figure 7.27 the nominal trajectory, x̄, as well as the actual disturbed
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Figure 7.25: Trajectory 1 is assisted by the controller to keep the driver safe.
Trajectory 2 is the expected driver input and collides with the obstacle.
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Figure 7.26: The inputs in Trajectory 1 and 2 as well as the corrective action
ū determined by the controller.

145



CHAPTER 7. INTEGRATED SAFETY . . . 7.4. SET-BASED ROBUST ACTIVE SAFETY

40 60 80 100 120 140
−8

−6

−4

−2

0

2

4

6

8

(m)X

(m
)

Y } ⊕ Z)t(x̄{

X X̄

 

Nomina l Tra jectory,
Disturbed Tra jectory,

x̄
x

Figure 7.27: A plot of the nominal trajectory, x̄, the disturbed trajectory, x,
and a projection of the robust invariant set along the nominal trajectory.
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Figure 7.28: The inputs showing the corrective action from the controller, ū,
the input from the driver model augmented with the controller action, unom,
the input with additive disturbance, udis, and the steering from the driver
model, δ̂d.

147



CHAPTER 7. INTEGRATED SAFETY . . . 7.4. SET-BASED ROBUST ACTIVE SAFETY

trajectory, x, are shown. Boxes are plotted along the trajectory to show the

geometry of the vehicle at various points in time. In addition, a sketch Zey =

projey(Z) is plotted to illustrate the size of the robust invariant set in the ey

dimension. The tightened constraints X̄ are shown in dashed lines. In Figure

7.28 the calculated inputs are shown for the scenario presented in Figure 7.27.

δ̂d is the nominal steering angle determined by the driver model, ū is the

corrective action calculated by the nominal MPC problem, and unom is the

final augmented input for the nominal trajectory, x̄. Further, the disturbed

input, udis, is plotted. This trajectory is detailed in the magnification in

Figure 7.28. It is clear to see the disturbed trajectory is contained within

the robust invariant set around the nominal state trajectory.
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7.5 Stochastic Robust Active Safety

Consider the stochastic driver model presented in §3.4. It is our aim to pro-

vide robust guarantees of constraint satisfaction even in the presence of the

driver’s uncertain behavior. The uncertainty in the driver model is handled

at the design stage by the computation of an upper bound on the propagation

of the uncertain disturbance. By tightening the constraints of the original

nominal system we solve the optimization problem to yield the optimal cor-

rective action needed to augment the driver’s steering to ensure satisfaction

of the safety constraints, to a given probability, in the presence of the uncer-

tain driver behavior. The proposed controller is always active, which avoids

the design of switching logic or the tuning of a sliding scale. In addition,

since the proposed controller is designed to only apply the correcting con-

trol action that is necessary to avoid violation of the safety constraints, the

intrusiveness of the safety application is kept minimal.

In this section we introduce a Stochastic Model Predictive Controller

(SMPC) for use with the modeled uncertainty on the future driver inputs.

The Integrated Framework of §7.1 is slightly modified to include a robust

control law that can explicitly account for this uncertainty. The objective

of the Stochastic Model Predictive Controller is to determine a corrective

steering action to keep the driver safe in the presence of uncertain driver

input. The problem formulation was presented in §5.3.2 in Problem PPROB.

We can specify the probabilistic constraint in Equation (5.31e) as

gT =

[

1 0 0 0

−1 0 0 0

]

, h =

[

ey,max

ey,min

]

where Pr{gT ξk+1 ≤ h} ≥ p, ξ = [ey, ėy, eψ, ėψ] and we set p = 0.99. Follow-

ing the results presented in §5.3.2 the probabilistic constraints are converted

to linear constraints using information on the disturbance and the problem is

able to be solved as a standard QP. Simulation results detailing the behavior

of the stochastic MPC are presented next.
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7.5.1 Simulation Results

In this section we present the simulation results. The parameters to imple-

ment the controller are listed in Table 7.6.

Table 7.6: Simulation Parameters

Parameter Value Units Parameter Value Units
m 2050 kg N 15 -
Iz 3344 kg.m2 Ky -0.005 -
ey [2.5, -2.5] m Kψ -0.2 -
Cα 80,000 - µ 1 -
lf 1.43 m Ts 50 ms
lr 1.47 m Σ 0.1 rad
v [0.2,-0.2] rad tlp 2 sec

We detail two aspects of the proposed framework. In section 7.5.1 a snap-

shot of the prediction is captured. This illustrates the tightened constraints

over the prediction horizon as well as the effect the corrective action has on

the vehicle. Section 7.5.1 depicts the actual trajectories taken by the vehicle

while the controller adds corrective action to avoid obstacles. Ten trajecto-

ries are simulated with the disturbance sampled from the normal distribution

N (w̄(t),Σ) in Equation (3.22), as well as the worst-case disturbances with

w̄ ± 3Σ (99.7%). These simulations show the statistical behavior of the pro-

posed framework in the presence of uncertainties.

Snapshot of Prediction

In this section a snapshot of the prediction is detailed as the vehicle ap-

proaches a roadside obstacle. Figure 7.29 illustrates this scenario. The cur-

rent vehicle position is marked by ξcurr and the predicted vehicles extend

over the horizon and is marked by ξpred. Trajectory 2 shows the prediction

of the vehicle position controlled by the nominal driver model only (3.17)

and is drawn in boxed-outline. Trajectory 1 shows the corrected trajectory

calculated by the model predictive controller. The corrective action has been

added to satisfy the tightened safety constraints (5.35). The constraints are
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Figure 7.29: A snapshot of the prediction where the vehicle encounters an
obstacle. The tightened constraints are labeled by γi. The vehicles in boxed-
outline, Trajectory 2, is the trajectory with the driver model only and Tra-
jectory 1 depicts the corrected trajectory to satisfy the safety constraints.

tightened by amount γi, i = 1...N over the horizon and is drawn as the

dashed lines in Figure 7.29.

Figure 7.30 plots the inputs for the scenario captured in Figure 7.29. The

input v = Kξ + c is the variable to be minimized and c is the optimization

variable able to add the corrective action to satisfy the safety constraints.

The driver model is δ̂d and it is clear the driver alone is not capable of

avoiding the obstacle, as noted by Trajectory 2.

Figure 7.31 plots the tightened constraints over the prediction horizon,

obtained by applying Equation (5.36) for i = 1...N .
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Figure 7.30: The inputs for the snapshot depicted in Figure 7.29. v = Kξ+c
is the minimization variable, c is the optimization variable, and δ̂d is the
nominal driver input.
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Figure 7.31: The upper bound γ on the disturbance propagation over the
prediction horizon.
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Figure 7.32: Plot of randomly simulated trajectories depicting the statistical
behavior of the controller. The worst-case trajectories are marked in dashed
line.

Sampled Trajectories

In this section we illustrate the statistical behavior of the proposed controller

by plotting ten randomly disturbed trajectories, drawn from the normal dis-

tribution N (w̄(t),Σ), as well as the worst-case w̄ ± 3Σ trajectories. Figure

7.32 shows the tightened constraints create a probabilistic satisfaction for the

original constraints and the vehicle successfully avoids the obstacles.

Note 9 In this scenario the obstacles have been widened compared to Figure

7.29 and the constraint has been placed on the vehicle center-of-gravity to

more clearly depict the trajectories.
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Appendix A

Experimental Vehicle Setup

Here we introduce the experimental vehicle setup. This thesis contains exper-

imental results from various experimenting platforms, including those from

Ford, Volvo, and Hyundai, and therefore only a general description will be

given. Figure A.1 shows a diagram of the experimental testing vehicle.

Figure A.1: A diagram of the experimental setup.
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We used a dSPACE Rapid Prototyping Control Unit to run real-time

control. Various sensors were utilized depending on the control task at hand.

These sensors include lane recognition from Mobileye [1], GPS and IMU from

Oxford Technical Solutions, and radar.

The MPC controllers have been tested on a passenger car, with a mass of

approximately 2050 Kg and an inertia of approximately 3344 Kg/m2. The

controllers were run in a dSPACE Autobox system, equipped with a DS1005

processor board and a DS2210 I/O board.

We used an Oxford Technical Solution (OTS) RT3002 sensing system to

measure the position and the orientation of the vehicle in the inertial frame

and the vehicle velocities in the vehicle body frame. The OTS RT3002 is

housed in a small package that contains a differential GPS receiver, Inertial

Measurement Unit (IMU), and a DSP. It is equipped with a single antenna to

receive GPS information. The IMU includes three accelerometers and three

angular rate sensors. The DSP receives both the measurements from the

IMU and the GPS, utilizes a Kalman filter for sensor fusion, and calculate

the position, orientation and other states of the vehicle such as longitudinal

and lateral velocities. Compared to a dual antenna setup, a single antenna

system has to learn the vehicle orientation and/or coordinate during vehicle

motion. This might cause the presence of a small offset in the orientation

measurement. In dual antenna systems the vehicle orientation can be easily

set even if the vehicle is not moving.

The car was equipped with an Active Front Steering (AFS) and Differ-

ential Braking system which utilizes an electric drive motor to change the

relation between the hand steering wheel and road wheel angles. This is done

independently from the hand wheel position, thus the front road wheel an-

gle is obtained by summing the driver hand wheel position and the actuator

angular movement. Both the hand wheel position and the angular relation

between hand and road wheels are measured. This actuator can operate in

two modes: with and without the intervention of the controller. In the first

mode the steering commands of the controller and the driver overlap and the

overall steering action is the results of the contributions from the driver and

the controller. In the second mode there is not controller intervention and
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the steering angle is completely decided by the driver through the steering

wheel. We used the second mode, and the driver action represents an input

disturbance. All the data about the actuator cannot be disclosed. The sen-

sor, the dSPACE Autobox and the actuators communicate through a CAN

bus. Measurement noises/bias: Compared to a dual antenna setup, in which

the vehicle orientation can be set and maintained (even during vehicle stand-

ing still), a single antenna system have to learn the vehicle orientation and/or

coordinate during vehicle motion. Therefore, a small orientation error may

occur in the single antenna setup. That is, while RT3002 knows if the vehicle,

(in particular, the antenna), is traveling north, for example, it has to learn

if the vehicle orientation is also pointing toward the north during this travel.

In the experimental results, we will see that an orientation bias/error may

lead to some additional transient dynamics as well as a steady state error

in vehicle orientation. The results also show that the overall performance in

lane change behavior is robust to this orientation bias.

The orientation bias discussed above can be eliminated if a dual antenna

system is used.

Before starting the experiment, an initialization procedure was required

to set up the OTS sensor. In this warm-up phase the vehicle has to be

driven and dynamic maneuvers are required in order to estimate the bias in

the accelerometers and in the angular rate sensors. Since we used a single

antenna sensor, the best accuracy in the yaw angle measurement is achieved

after a warm up phase. In a dual antenna sensor, the difference between the

position of the two antennas is used to compute directly the yaw angle and

the measurement is not affected by errors due to an imperfect initialization.

After the OTS sensor has been initialized, an inertial co-ordinate frame has

to be defined. This is done when the experiment starts.

The test is initiated by the driver with a button. When the button is

pushed, the inertial frame is initialized as follows: the origin is the current

vehicle position, the axes X and Y are directed as the current longitudinal

and lateral vehicle axes, respectively. Such inertial frame becomes also the

desired path coordinate system. The origin of the inertial frame is fixed at the

current vehicle position, while the X, Y axis are oriented as the current vehicle
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longitudinal and lateral axis respectively. The position in the inertial frame

is then derived from the GPS coordinates by a coordinate transformation.

The path reference is given in the defined inertial frame.

Note that noise may affect the yaw angle measurement due to the single

antenna sensor setup. Compared to a dual antenna setup, a single antenna

system has to learn the vehicle orientation and/or coordinate during vehicle

motion. When the vehicle stands still the yaw angle is computed by integrat-

ing the yaw rate measurement from the IMU. This might cause the presence

of a small offset in the orientation measurement, while traveling at low speed

or being still.

Figure A.2: Pictures of the Hyundai setup.
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